Effective Testing of Factor Combinations
George B. Sherwood

ATET Bell Laboratories
Lincroft, New Jersey 07738

ABSTRACT

A method and ool for system test case selection is described with examples. The Constrained Array Test
System (CATS) is a system test ol which generates and analyvzes possible test cases. It suggests a
sequence of tests o minimize the number of untested combinations of test factor values. CATS improves
system 1est productivity by reducing the number of test cases, thereby saving testing time. CATS also
improves quality (the ability to find faulis), through better coverage of combinations of test factor values.
The ool easily adapts to real-world constraints which often preclude testing with certain combinations of
test factors.

1. HOW MUCH TESTING IS ENOUGH?

As any software development project approaches completion, one inevitable madeoff emerges: How much
testing is enough? Too little testing leads o expensive fixes in the field and lost customers, Too much
testing leads o delayed products and lost customers, So the tradeoff is how to balance the need for quality
with the need for a amely product. Unless the testing program is effective and efficient, this wadeoff can
evenmually become a dilernma over which way to lose the intended market.

This paper describes a method and waol for test case selection developed at AT&T Bell Laboratories in
carly 1990, The motivation for the work was improvement of the system test process. At the time we were
unable to find tools o make a very large test job manageable. We wanted (o improve the way we chose test
cases, and the Consirained Array Test System (CATS) was the result.

1. APPROACHES

The description of the Consmained Array Test System is best done in a context of other methods for
software test coverage. For the purposes of this paper they are divided into two groups:

» Systematic Coverage Methods, and

« Test Factor Coverage Methods.
CATS falls into the laner group.

2.1 Systematic Coverage

Systematic coverage methods emphasize covering the states (or behavior) of the system under test. The
methods require a good view into the system: Code coverage methods can be thought of as "white box”
testing, with complete knowledge of what is inside the system. Model coverage methods can be considered
“"black box" testing, but a complete, formal model of the system is required. Generally systematic coverage
methods employ software wols for assessing test coverage or for selecting test cases.

2.1 Code Coverage Tools Code coverage tols often are used for unit testing or subsystem testing. They
may be part of a development package to be applied as individual units are built and integrated together,
Typically code coverage tools give the tester stanistics about usage of the code under test, including
references to line numbers of source code which are not exercised by the tests in use. Using such tools the
tester can create test cases until there is 100% coverage. Then additional test cases will not cover more
code.

2.1.2 Model Coverage Tools Model coverage tools use formal models of what the system should do, to
generate test cases, For example, the POSTMAN tool!'] uses deterministic finite-state models of systems to
find test cases which cover all state transitions with a minimum run time. The tool has been successfully
applied to the testing of communication protocol implementations. Using such a tool. the tester can run just
enough test cases to determing if the system follows the model.

151

22 Limitations

Systematic coverage tools are very effective, but their applicability to system testing can be limited for any
of several reasons:

« Source code may not be available for parts of the system.

= A formal model of the whole system may not be available,

+ The system may be oo large or complex for available wols.

« Available tools may be incompatible with some parts of heterogeneous systems.

+ Additional test factors may be important -- e.g. environmental conditions. configurations, values for
parameters and data,
These limitations suggest the need for other methods and tools 10 compléement systematic coverage.

1.3 Definitions
The following definitions are provided for the discussion of test factor coverage methods below.

23.1 Test Factor A test factor is any variable whose values are 10 be controlled during the tests, A rest
factor value is a specific value taken by one of the factors during the tests.

An example of a test factor is the processor speed in MHz for a client computer -- client_speed. This factor
could have as one of its values 33. in those test cases where the client’s processor runs at 33 MHz.

Generally test factors can be anything thought 1o be relevant 1o the test job, Examples are:
+ Environmental conditions
+ Characteristics of a larger system of which the test system is a part, e.g. hardware and operating system
configurations
» Processor speed
« System load characteristcs
Modes of operation and options for the system under t2st

-

Choice of communication configuration for interaction with another part of the system, e.g. interfaces,
endpoinis, eic.

« Characteristics of users and user interfaces
+ Command line arguments
« Input data, e.g. text field contents, mouse position coordinates, etc.

2.3.2 Test Case A rest case is a set of specific test factor values in which one allowed valoe is associated
with each of the test factors. Thus, the set of factor values represents an individual test from a sequence to
be performed.

For example, if there are seven test factors chosen, say client_speed, server_os ver, and five others, a test
case is a set of values for all of the seven factors. A test case could have client speed=33,
server_os_ver=5VR4, and five values for the other five factors.

2.3.3 Combination of Factor Values A combination of 1est factor values is an association of some number
of factor valves. E.g. client_speed=33 with server_os_ver=SVR4 is a combination of two factor values
which could occur in a particular test case. Typically testers consider pairwise or two-al-a-time
combinations when assessing test coverage,

2.4 Test Factor Coverage

Test factor coverage methods aim to cover the values or combinations of values of specified test factors.
The factors may or may not be related to the states (behavior) of the svstem under test Since the test
factors are general, test factor coverage methods can be more flexible and readily applicable than those of

152

systematic coverage. On the other hand, if the tester selects test factors related to the states of the system,
he or she must select factors and values which correctly reflect how the system works, usually without the
benefit of a formal model.' Section 6 below gives two examples in which test factor values are related 1o
the state of the system onder 1est.

The following sections outline five ways to select test cases for test factor coverage.

24.1 One Factor at a Time One straightforward approach is 1o select one value for each factor, say a most
likely value or a default value. Then holding all but one of the factors at fixed values, the tester varies the
remaining factor through all its allowed values. This process is repeated so that each factor takes on all of
its allowed valugs. The number of resulting test cases is relatively small, but their ability 1o find faults is
limited. While all of the individual factor values have been covered. all of the pairwise combinations have
not. Consequently faulis related to interactions between two factors may not be found.

24.2 All Combinarions Another approach is to test all combinations of factor values. For example, with
four factors having six valves each, there would be 6666 = 1296 test cases. This method should find all
faults because all combinations are tested. However, unless the numbers of factors and values are very
small, the method is not practical: It leads 1o 100 many test cases.

243 Random Test Case Selection Another approach is to select factor values randomly. Here the tester
can choose an intermediate number of test cases, but their ability to find faults among the different factors is
not readily predictable. Some values and combinations of values are likely to be covered more than others,
because there is no control applied 1o the selection of values. In the anthor’s experience, a larger number of
randomly selected test cases is needed for coverage of all pairwise factor value combinations, compared to
the number when using orthogonal arrays or constraaned arrays.

2.44 Orthogonal Array Testing An onhogonal array (or Latin square) is an armay of integers which may
be used to select test cases. Each column of the armay corresponds 1o the values for a test factor; each row
of the array represents a test case. An orthogonal array has the property that for every pair of columns, all
combinations of their values occur, and they oceur an equal number of times.'*' Thus, if an orthogonal array
representing the test problem can be found. the resulting test cases will cover all pairwise combinations of
factor values. And the number of recommended test cases generally will be small. However at times it
may be difficult or impossible to find an orthogonal array that accurately represents the real-world test
problem.

The motivation (o develop CATS came from our attempt to use orthogonal array testing 1o specify client
test configurations for a local area network product. This particular job was large and labor intensive: The
requirements called for 101 combinations of personal computers (PC) and operating system versions to be
used with fifteen different network cards. We knew that the operating system version of the client PC was
an important factor for finding software defects. However, the values selected for this factor were
dependent on the values of two others - the vendor of the PC and its processor. PC vendors would specify
which versions of DOS or OS5/2 were supported on any particular model; generally new machines were not
supported with earlier operating systems. OS/2 could not be used with 8088 or R086 processors, and only
one of our required PC vendors supported all the reguired processors.

Matters got more complex when network cards were considered. Our requirements called for support for
two different PC bus types. The newer of these was supported by only one of our PC vendors, and only on
newer processors and newer operating system versions. Le. the bus type factor was dependent on three
other factors,

The onhogonal array tool we were using provided for some dependencies among test factors, However, the
real constrainis contained in our requirements could not be given 1o the wol without simplification, We

1. Systematic coverage and test factor coverage methods do nol precluds sach other. 1F a svsiematic coverage 1ood 15 applicable, it can
be used with test factor coverage methods. E.g. CATS can be used io specify 1est configurations for a model coverage tool
specifying the stale transitions to be wawed.

153

could omit some of the dependencies, but that led 1o some of the test cases being impossible. For example,
anachronistic configurations like an 8088 processor with a Microchannel bus or an 80386 processor with
DOS 3.1 were suggested. If these impossible test cases were left out. then some of the desired
combinations of factor values would not be covered.

245 Constrained Array Testing A constrained array is an array similar 1o an orthogonal array in that its
elements correspond 1o test factor values, with columns representing test factors and rows representing test
cases, It differs from an orthogonal array in two ways:

+ Constrained arrays do not cover factor value combinations which are excluded from consideration, e.g.
because the combinations are not possible,

+ Constrained arrays do not cover factor value combinations an equal number of times. Instead each
combination is covered at least once,

Mathematically a constramed array is a generalization of a r-covering arrav. Several researchers have
studied how to mimmize the number of test cases resulting from r-covering arravs over the past several
years.”) ¥/] Sloane has studied 3-covering arrays and provided an extensive bibliography.® When CATS
generates a constrained array, it does not anempt 1o find the absolute minimum number of test cases for the
particular test problem. CATS does find the minimum number for some problems, but its purpose is to find
a small set of west cases. The appendix to this paper gives more detailed information on the number of test
cases CATS suggests.

3. FEATURES OF CATS

This section outlines features that have been built into CATS. A demiled discussion of all of them is
beyond the scope of this paper.

The Constrained Array Test System is a system test tool which generates and analyzes possible test cases.
It suggests a sequence of tests to minimize the number of untested combinations of test factor values.
CATS improves system test productivity by reducing the number of test cases, thereby saving testing time.
CATS also improves quality (the ability 10 find fanlts), through hetter coverage of combinations of test
factor values. The tool easily adapts to real-world constraints which often preclude testing with cerain
combinations of test factors.

» Small Number of Test Cases — CATS generally recommends a dramatically reduced number of test
cases compared 1o the number of possible test cases. As the test job gets bigger and more complex (i.e.
as the number of factors increases), the number of recommended test cases increases very slowly: The
number of test cases is observed 1o approximate a logarithmic function of the number of factor value
combinations under consideration.

« Capacity for Large Numbers of Factors and Values — CATS currently suppors 63 or more test
factors. The number of values allowed for each factor is limited by the number of test cases under
consideration (typically up 1o a few thousand).

« Conformance to Test Case Constraints - CATS can generate and analyze test cases with arbitrary
constraints. That is, it does not matter if there are rules that make some test cases impossible; CATS
can accommaodate such constraints to analyze and recommend only possible test cases.

CATS also supports the use of equivalence classes or "sliding levels."

+ Ordering of Test Case Sequence -- CATS suggests a preferable order for test case execution, which
gives early coverage to the most combinations of factor values. Thus more faults can be found sooner
in the 125t process.

The test case order suggested by CATS follows the priority order for the values of each factor, as
specified by the user. So, for example, default values can be tested first, least used values last.

» Interfaces for Factor Values and for Test Cases — Either of two interfaces can be used for test case
analysis. The expand program takes factor values and generates test cases for analysis by the cats
program. Alternatively. the cats program can be given test cases directly,

154

= Detection of Higher Order Mode Failures - The process used by CATS is not restricted to work with
factor values two at a time. [t is easy to consider single, double, triple or higher mode failure detection
if such faults are thought to be important to the test job.

4. HOW CATS WORKS -- SMALL PROBLEMS

Cats is a single program written in C language. It takes as input sets of test factor values which span the
test cases under consideration. These cases can be derived directly from an analysis of requirements; they
can be taken from the expand program or some other test case generation tool. Cats reorders these cases
using an algorithm that looks for the next "best" test case, which muinimizes the number of uniesied
combinations of factor values. Cats output is the reordered test cases. With each test case is a running
count of untested combinations of factor values. The user can judge how many of the test cases o execote,
based on this information. Cats can analyze the combinations using an arbitrary number of factors at a
time, limited only by the number of factors in the problem or the computing resources in use.

Cats uses two arays to store and manipulate (251 cases — an experimen: amray containing test cases assumed
to have been performed, and a vecror array containing all the remaining test cases, any one of which could
be done next. Initially the experiment array is empty, and all the test cases are placed in the vector array.

On a trial basis, each test case from the vector array is placed in the experiment array, and the number of
uniested combinations in the experiment array 15 found. The best st case — the one which if executed,
results in the fewest number of untested combinations -- is selected. It is placed in the experiment array, 10
be done next: and it is removed from the vector array, as it no longer indicates a new direction,

The process of finding the next best test case is repeated, and each cormresponding test case is moved from
the vector array 10 the experiment array. This goes on until all the test cases are moved from the vector
array 1o the experiment array, or there is no further improvement in the 1est coverage.

Essentially, cats follows the steepest gradient through the space of test cases, to reach the minimum number
of untested combinations of factor values.

The expand preprocessor is a UNIX shell program which generates st cases for the cats program from a
list of factor values to be analyzed. The preprocessor provides a simple way to generate test cases for cats:
It echoes factor values in nested loops, so that all possible test cases are given (o cats. For example, the
expand input

rye white

cheese pnuthtr jelly

enables the analysis of all combinations of rve or white bread with cheese, peanut butter or jelly. The
individual test cases need not be enumeraied.

Expand also has a simple mechanism for handling constraints and dependencies among test factors, which
15 illustrated in the example of the following section.

5. AN EXAMPLE
In this section we consider a test example with three factors. Each factor can take on five values:

* Lunch Platform -
rye bread. white bread, wheat bread. macaroni, spaghetti

« Topping Application --
cheese, peanut butter, jelly, clam sance, tomaio sauce

+ Beverage Program --
Coke, milk, coffee, tea. Chiant
There are constraints imiting which combinations of factor valves are allowed with other values. These
constraints are given to expand by listing all allowed groups of factor value combinations in the expand
input.

155

ye white

cheese poutbtr jelly

coke milk coffee 1eg
append

wheat

cheese Jelly

coke milk coffee tea
append

macaron spaghet

clams cheess tomiato
milk coffee chianti

Each group of three lines separated by "append” represents allowed combinations of factor values, with
each line contaumng the allowed values for one of the factors,

= The first group indicates that rye or white bread is allowed with cheese, peanut butter or jelly and with
coke, milk, coffee or tea

+ The second group indicates that wheat bread is allowed with cheese or jelly and with coke, milk, coffee
Of tea.

» The third group indicates that macaroni or spaghetti is allowed with clams, cheese or tomato and with
milk, coffee or chianti.
With this feature it is easy for a user to accommodate complex factor value constrainis in the generation of
test cases for cais.

Expand generates all possible test cases for each of the three factor value groups: The first group vields the
first 2-3-4 = 24 test cases: the second group vields the next 1-2-4 = 8 test cases; and the third group
yields the 1ast 2-3-3 = 18 test cases.

156

The expand output for cats is as follows.

EE RN s S REEERoge e dovwavuN—0

F3F3333"v

e
11'!
rye

10k

white

g

white

PREREEE

wheat

i
TR TR T ELL 11 T

whest
wheat
wheat
wheat
wiheat

I

rpaghei

spaghet
spaghet

spaghel

i
-
i

ELLL
PEE

11
ERRE

157

GEFERRARTARETERET AR RRETARATBRETRETLLS"

1y

L

When expand invokes cats. the following output results,

i} 5 5 g 1:1% 275 3:025 215
1 rye cheese coke 1:12 292 M4 I8
2 white pratbtr milk 1% 269 23 200
3 whea iy coffee 16 266 3122 194
4 macaron clams chianti 13 263 3121 IE7
§ spaghet tomals milk 1:1 60 3120 [EI
f e pouther ea 140 25T 319 176
7 ne Jelly il 10 254 3118 172
g whits cheess coffies 10 251 3117 168
9 white jelly coke 10 248 116 164
0 wheat chesse milk 10 245 3115 180
Il macaren tomato coffee [0 242 3004 158
12 spaghet clams coffee 10 239 3013 152
13 spaghet cheese chuon 10 236 3112 143
14 e pomtbtr coffee 1400 234 001 145
15 white cheese lea 140 237 3110 142
16 whea Jjelly e 140 2:30 308 139
17 macsron clams milk 10 228 3108 136
I8 rye prsthtr coke 10 227 %107 134
19 when chess= coke 1:0 2 108 132
10 macaron chesss milk 10 225 3105 130
2l macaron iomsio chiamt 1:0 224 1104 12R
L mye cheese mulk 1:0 224 3:103 127
23 rye cheete coffec 10 224 30 126
24 rye cheese lea L0 224 3101 125
5 rye poutbtr milk 10 224 3000 124
6 rye jelly coke 10 224 3099 123
27 e jelly eoffee 10 224 398 122
W e jelly 10 224 397 1
1 white cheese coke =0 224 306 120
30 white cheese mikk 140 224 345 19
31 white pouthir coke 1:0 224 354 112
32 white poutbly coffee [0 224 303 7
33 white pouthtr ea 10 224 391 116
34 while Jjelly bl I 224 314 15
35 white rlly coffes 1:0 224 390 114
36 white jelly tea 10 224 3% 113
17 whea chise ooffes 1:0 234 388 112
IE wheat chesse fea 10 224 347 111
19 wheat Jelly coke 10 224 346 110
40 wheat jelly milk 10 224 385 109
41 macaron clams coffee 10 224 384 108
42 macaron cheese coffee 1D 224 3:83 107
43 macaron cheese chiann 1A 224 382 106
44 macaron tomato milk 10 24 38 105
45 spaghet clams mik 10 224 IR0 104
46 spaghet clams chiani 10 224 379 103
47 spaghet cheese milk 140 224 3TR 102
4% spaghet chesse coffee 140 2 T 1ol
49 spaghet tomato eoffee 10 224 376 100
50 spaghet tomale chiandi 100 224 375 o9

The test cases now appear in a different order (with different numbering) and with four new columns on the
right side. CATS recommends this new order for test case execution. Each of the new columns gives a
running count of the number of umested combinations of factor values as the test cases are performed.

The first new column (which starts with 1:) lists the number of untested combinations of factor values when
the factors are considered one at a ime. The zeroth row shows that there are 5 + 5 + 5 = 15 such
combinations before any testing is done, After the first test case is done, four values of each factor remain
untested, so 1:12 appears. After the sixth test case is done, all of the individual values have been rested., so
1:0) appears.

158

The second new colomn (which starts with 2:) lists the number of untested combinations of factor values
when the factors are considered two at a ime, The zeroth row shows that there are 5-5 + 5-5 + 55 = 7§
pairwise combinations before any testing is done. After the first test case is done. 72 combinations of
values remain untested, so 2:72 appears, After the twenty-first test case is done, 24 of the combinations
have not been tested, so 2:24 appears.

Similarly. the third new column gives a count of the uncovered three-at-a-time combinations. The fourth
column simply sums the other three columns for a total number of uncovered combinations.

In this example CATS suggests
» 6 test cases 1o cover all factor values individually, or
» 21 test cases o cover all allowed factor value pairs, or
» 30 test cases o cover all allowed factor value miples.

If the tester selects the first 21 test cases, he or she will test all the allowed factor values individually and in
pairs. There are 125 — 75 = 50 allowed factor value triples. Of these, the tester will cover
125 — 104 = 21 combinations, for 21/50 = 42% coverage of the allowed three-at-a-time combinations.

There are 24 out of 75 pairwise combinations and 75 out of 125 three-at-a-time combinations which are not
covered due o constraints imposed in the problem.

6. TEST CASES THAT MASK COMBINATIONS

When we work with configuration factor values for hardware and operating system versions, Our CONSIAINTS
may have a simple meaning: The cases we do not consider are really impossible. But in other problems it
may be necessary to apply constraints to avoid test cases that mask coverage of desired combinations.
Typically these are problems in which factor values imply a change of state in the test system. The nexi
two sections illustrate the point with two examples.

fi.1 Single Values that Mask

The simplest example of masking combinations is the use of error values. Testers need 1o test not only
“sunny day" values of factors, which demonstrate that the system operates normally, but also the “rainy
day” values, which show that the system detects and responds to abnormal conditions. Now if the tester
simply mixes normal and error values in the CATS analysis, it is quite likely that when an error value
occurs, it will canse the system 1o follow an error leg of the program logic. And this change of state may
mean that a combination of two normal values which is supposed to be covered in the same test case really
is not covered as the tester intended. We call this occurrence a masked combination.

The tester can avoid masked combinations by applying different CATS runs to different states, i.e. by
constraining each CATS run to tests of a single state. For testing error values there are a couple of simple
approaches:

» If the tester is concerned only with covering individoal error values, and not combinations with other,
normal values, then the CATS analysis can be done with only normal factor values, Individual error
values then can be substituted for normal values in the resulting test cases,

= If the tester is concemned with covering combinations of ermor values with other, normal values. then the
tester can do a separate CATS run for each factor which has error values. Each run would include all
the error values for one factor with the normal values for all the other factors.

6.2 Combinations that Mask

The second example of masking combinations involves a “normal” state change of the system under (est.
We suppose an electronic messaging system is under test, and it has two features of interest:

= automatic forwarding on the basis of the received message’s subject and

« amomatic deletion on the basis of the received message’s subject.
Also, the autodeletion feature takes precedence over autoforwarding if they are to act on the same message.

159

-10-

(It would be deleted and not forwarded.) There may be several test factors relating to how these features
are configured and 1o the properties of test messages. However, if we do not avoid the autodeletion feature
taking precedence over autoforwarding, then there may be a desired autoforwarding combination which is
masked. Forunately CATS provides a solution here: The tester can impose constraints so that the
autodeletion feature does not delete a message to be forwarded. (Of course a separate CATS run could he
used for cases where a message o be forwarded is deleted.)

7. HOW CATS WORKS -- LARGE FROBLEMS

For systems with large numbers of test factors (for which expand would generate too many test cases for
cats o process at once), the expand program has been designed to work with cats in an iterative mode. In
this situation expand starts with the largest possible subset of the test factors, and cats analyzes the
resulting test cases. Then expand removes the unnecessary test cases (which do not reduce the number of
uncovered combinations) by truncaing the cats output file. Using the remaining test cases with one or
more additional factors, expand generates new lest cases for cats to analyze. This iteration process
continues until all the factors are included, and their 1est cases are analyzed. Thus. large problems are
broken into smaller pieces, enabling CATS to handle large numbers of test factors easily. For example,
using this procedure CATS has found 240 test cases to cover all pairwise combinations among twenty
factors with ten valees each.

160

11 -

APPENDIX
HOW MANY TEST CASES DOES CATS RECOMMEND?

This appendix gives formulas for estumating the number of test cases CATS will recommend for a
particular test problem. These are empirical results based on experience with CATS.

Formulas for Cases Without Constraints

This section estimates upper and lower bounds for test problems without constraints, The upper bound t°
approximates the "worst case” in which all factors have an equal number of values.

Definitions:
n = number of faciors in problem. 1 < n.
m; = number of allowed values for j* factor.
List factors in decreasing order:
m= Tu“{m’] =M 2Ny 2 e 2M,
i
! = number of factors to consider in combination. 1</ <n.
(#) = n! _ nin=1)+--{n={+1)
' Nin—1)! =1} -+ 1 '
= number of combinations of n factors taken | at a time.
T = number of test cases from CATS (without consiraints).
T = munimum number of tesr cases
T* = approximate maximum number of test cases from CATS.
R B, oS
Formulas:

t.-= nmJl=ﬂ'I| R Gl

» Approximate Maximum Number of Test Cases:

t* =Aa..{\||ln1{j“} w1 - # +m',
J

Are = Ve (-1 (m-1)""
« Total Possible Test Cases:

]
H!ﬂf =0 "By M.
J=l

161

Examples

I 8

The table below shows three examples for n =4 factors, considered /=2 at a time, with m=6. In the firs
two examples CATS suggests the minimum number of 1est cases possible, because the numbers of factor
values m; fall off from m fairly quickly. The third example illustrates the “worst case.” Here all the factors
have the same number of values, and the approximate maximum number of test cases is reached.

Number of Test Cases
Mumbers of Test Approximate Total
Factor Values Minimum Acmal ~ Maximum Possible
mp; ma, ms my T T Tt
6 2 2 2 12 12 S0 48
6 4 4 2 24 24 S0 192
6 6 6 6 36 50 S0 1296 |

The figures on the following pages compare the approximate upper bound t* with observed numbers of
CATS test cases, for several examples in which all factors have the same number of values.

162

-13-

Number of Test Cases When | is 2 and m_ is Constant

1 10 30 100 300 10040 3000 10000 SO0

80 | — &0
/’//“ -
1

] &0
40 80
40 — &0
40]
20 an
0 40
n i}
o 0

0 , 0

10 k! 106 i 1000 3000 10000 000

Combinations of Factor Values

163

-14-

Mumber of Test Cases When | is 3 m--llndmjls{:nmtmt

1 3 10 30 100 300 1000 3000 10000

30000
B0 — 0

20

a0

0

\
4+

x S
//(
-'...._,..-l"- W
-___.____,_..--r" x
=l 3 | F_______..q_
[+-|- =
ﬁf:ﬁ': b
e - 20
.___._.-r"'-._.-r: “* EE i
+ -
l'-____________._+.--'—"'"-'_'.-':r
Lok
i
10 Elil 100 300 1004 NN 10000 20000
Combinations of Factor Values

These figures show that for large numbers of factors n, the number of test cases generated by CATS is
approximated by a logarithmic function of the number of factor value combinations to be covered, m'(}).
This means that as the number of factors n gets large, the number of test cases T increases very slowly with
.

164

-15-

Formulas for Cases With Constraints

When a test problem has constraints, the number of test cases for each group of factor values can be
estimated using the formulas of the previous section. Then the number of test cases for the whole problem
can be estimated 1o be between the largest number of test cases for an individual group and the sum of the
test cases for all the groups.

T° = Number of Test Cases With Constraints.
t; = Number of Test Cases for i™ factor value group in expand input.

First Group: Factor 1 Values
Factor 2 Values

Factor n Values — 1, cases
append

Second Group: Factor 1 Values
Factor 2 Values

+

Factor n Values — 1, cases

append

i* Group: Factor | Values

Factor 2 Values
Factor n Values — T, cases

append

« Minimum and Mazimum Numbers of Test Cases With Constraints:

max(t;) st < ¥1;
ail i all

165

- 16~

REFERENCES
1. Anton T. Dahbura, Krishan K. Sabnani, and M. Umit Uyar, "Algorithmic Generation of Protocol
Conformance Tests." AT&T Technical Journal Vol. 69, No. 1. pp. 101-118 (1990).
2. M. 5. Phadke, "Quality Engineering Using Robust Design” (Chapter 3), Prentice Hall (1989),
3. A. Renyi, "Foundations of Probability," Wiley (1971).

4.G. 0. H. Kaonah, "Two applications (for search theory and truth functions) of Spemner type theorems,"
FPeripdica Math. Hung. Vol. 3, pp. 19-26 (1973).

5.D. J. Klentman and J. Spencer, "Families of k-independent sets,” Discrete Math. Vol. 6, pp. 255-262
(1973).

6. N. J. A. Sloane, "Covering Arrays and Intersecting Codes.” Journal of Combinatorial Designs Vol. 1,
pp. 51-63 (1993).

166

