
Embedded Functions for Constraints and Variable
Strength in Combinatorial Testing

George B. Sherwood
Testcover.com, LLC
Colts Neck, NJ USA

sherwood@testcover.com

Abstract—An embedded functions feature was implemented
to specify functionally dependent relations among test factors.
Functions embedded in a combinatorial test case generator
specified test factor constraints to which the resulting test cases
conformed. The functions were defined in a general-purpose
programming language widely used among software engineers.
Examples with and without embedded functions were compared.
Embedded functions were used to evaluate equivalence class
factors to insure coverage of selected classes of results.
Embedded functions also were used to evaluate hybrid factors in
variable strength designs. Usability and performance
characteristics were described.

Keywords—combinatorial testing; constraints; coverage
analysis; embedded function; equivalence class; equivalence
partitioning; functional dependence; interaction testing; PHP; test
case generation; test design; variable strength

I. INTRODUCTION
Combinatorial testing generates relatively small sets of test

cases for complex systems. Such a system has k test factors
(e.g. test configuration choices and input parameters). The
systematic application of combinations of test factor values (t-
tuples, with t < k) significantly reduces the number of test cases
versus those of all combinations. These strength t test cases can
result in more effective testing and higher quality compared
with other test case selection methods.

This work reports on a project to improve the usability and
efficiency of conforming to system constraints in combinatorial
testing. Functionally dependent relations appear as constraints
in test models. A test factor is functionally dependent when its
value is identified by those of its determinant factors. E.g., to
test using a date input, the value of last_day(month,year) may
be needed to verify month boundaries. Reference [1] proposed
using embedded functions (EF) in a combinatorial test tool to
specify test constraints in a language familiar to software
engineers. Embedded functions, like last_day above, would
return values for dependent factors based on the values of
determinant factors. The relations among the factor values
would define the constraints for the system under test.

Test constraints can arise from: (1) test configuration
requirements, (2) test input requirements, and (3) coverage
requirements for classes of expected results. Consequences of
test plans that do not conform to constraints may include: (1)
impossible or unsupported configurations, (2) inputs that
cannot be entered or that lead to error cases, and (3)
insufficient coverage (missing t-tuples) for classes of results.

All of these situations can lead to masking [2,3,4], which
reduces the benefit of t-tuple coverage. Masking occurs when a
required tm-tuple (tm � t) is missing from the test cases for a
class of results. When test cases (k-tuples) cannot be run, tm-
tuples can be skipped. When t-tuples are distributed among
disjoint classes of results, some classes can miss expected t-
tuples. Conformance to system constraints is essential for
effective combinatorial testing. Thus, improved usability for
constraint conformance is a powerful motivation for embedded
functions.

This paper describes an initial implementation of the
embedded functions feature which was introduced in [1].
Examples compare the use of embedded functions with that of
manually selected, fixed factor values. Examples requiring
composite relations to describe complex constraints are shown.
Embedded functions enable the association of values from 2 or
more factors. An immediate consequence is the possibility of
generating subarrays of higher strength, i.e. variable strength
designs with t < t’ and k’ < k factors [5]. The paper offers some
higher strength schemes and reports on performance
characteristics of the implementation.

Overall objectives for the work were as follows.

1. Specify constraints among test factors with simple
functions in an established programming language.

2. Evaluate composite, embedded functions automatically to
generate test cases conforming to test model constraints.

3. Generate variable strength designs using embedded
functions.

4. Generate test case designs with suitable response times.
5. Generate test case designs with practical sizes.

The remainder of the paper consists of the following
sections, II. General Methods, III. Strength 2 Results,
IV. Variable Strength Methods, V. Variable Strength Results,
VI. Discussion. Details for all of the examples of this paper are
available at Testcover.com [6]. Test case generation requests,
results and embedded function listings are posted there for
review.

II. GENERAL METHODS

A. User Interface
PHP [7] was the language selected for embedded functions

in this project. PHP is broadly used, and it supports both user-
defined and built-in functions. The embedded functions feature
enhanced Direct Product Block (DPB) notation to accept factor
values returned from PHP functions. (DPB notation was

2016 IEEE International Conference on Software Testing, Verification and Validation Workshops

/16 $31.00 © 2016 IEEE

DOI 10.1109/ICSTW.2016.16

65

introduced in Section 6.1.3 of [8].) The test case generation
request is entered in DPB notation, in a text box on the
generator form. A summary of DPB notation is presented in
Table I. The allowed values for each factor appear on a
separate line in a block. All combinations of factor values in
the block are allowed. Partitions are sets of blocks. A
partition’s allowed combinations include all of its blocks’
combinations, and no disallowed combinations.

The first panel of Table II gives an example of DPB
notation to specify valid dates according to calendar rules.
Manually selected fixed values (FV) specify the constraints in
5 FV blocks. The first block specifies days 1 and 10 for all
months and 3 years; the other 4 blocks include the last day for
each month. In the enhanced DPB notation, functions can be
listed as values for dependent factors. In the second panel of
Table II, the Day factor has 2 fixed values, 1 and 10, and the
function last_day($month,$year). The function name must
conform to PHP rules [7] and start with a letter or underscore
(_). The arguments to the function are the determinant factor
names $month and $year. Determinant factor names are PHP
variables, so they are represented by a dollar sign ($) followed
by the name of the variable. In the second panel, the Day factor
is functionally dependent (FD), so it is contained in an FD
block.

The first two panels of Table II show that the last_day
function allows the number of blocks in the request to be
reduced from 5 to 1. It is simple to define this function to
return the last day for the specified years. Alternatively, the
third panel of Table I shows how the built-in function
cal_days_in_month [7] can support a broader range of years.

TABLE I. DPB NOTATION SUMMARY

A request contains the data for one set of test factors. It is a multi-line
string consisting of an optional heading and 1 or more partitions.

A heading is a string of 1 or more lines consisting of a request_name
and optional factor_names.

A factor_name labels a column of factor values in the results, e.g.
Browser, $month, $a. A factor_name that is a PHP variable (starting with $)
can label a determinant factor.

A partition is a multi-line string containing 1 or more blocks. It
represents all the allowed combinations of factor values for 1 test case
generation instance.

A block contains 2 or more factor_value_lines. All combinations of
factor values in a block are allowed. The union of all the blocks’
combinations defines their partition.

A factor_values_line is a string containing 1 or more factor values;
these can be fixed values or embedded functions, e.g. 1 10
last_day($month,$year). A dependent factor has 1 or more functions among
its values.

An embedded function returns a string of 1 or more fixed values; the
function is 1 of:

a PHP user-defined function, e.g. last_day($month,$year)
a PHP internal (built-in) function, e.g. max($a,100)
or a determinant factor_name, e.g. $a

A function argument is either a determinant factor_name or a fixed
value.

A fixed value is either: a Boolean, e.g. TRUE, or a string, e.g. 100

Types may be changed by context during evaluation.

TABLE II. EMBEDDED FUNCTION EXAMPLE

Calendar Partition with Fixed Values
Calendar Example without last_day function
Month
Day
Year
#ok All good dates
jan feb mar apr may jun jul aug sep oct nov dec
1 10
2015 2016 2017
+ long month last day
jan mar may jul aug oct dec
31
2015 2016 2017
+ short month last day
apr jun sep nov
30
2015 2016 2017
+ feb last day
feb
28
2015 2017
+ leap day
feb
29
2016

Calendar Partition with Function last_day($month,$year)
Calendar Example with last_day function
$month
Day
$year
#ok All good dates
jan feb mar apr may jun jul aug sep oct nov dec
1 10 last_day($month,$year)
2015 2016 2017

PHP Function last_day($month,$year)
<?php
function last_day($month,$year) {
 $mo_num=array('jan'=>1,'feb'=>2,'mar'=>3,'apr'=>4,'may'=>5,'jun'=>6,
 'jul'=>7,'aug'=>8,'sep'=>9,'oct'=>10,'nov'=>11,'dec'=>12);
 return(cal_days_in_month(CAL_GREGORIAN,
 $mo_num[$month],(int)$year));
}
?>

B. Request Processing
Examples described here were run on a Testcover.com

server configured for production, using Intel Xeon ES-2650
2.00 GHz processors. The server ran Linux 6.7, Apache/2.2.15
and PHP 5.3.3. Requests were submitted using a browser
running on the server (Firefox ESR). The response time for
each request was taken as the difference between its start and
stop log entries.

The embedded functions enhancement was implemented in
the program which processes test case generation requests. An
automated process converted FD blocks to FV blocks, based on
the procedure of [9]. The automated process also contained
proprietary enhancements to limit the number of FV blocks
generated.

The program parsed the factor values to find the names and
arguments of embedded functions. To process composite
functions, the program ordered the functions of each FD block
for evaluation. The ordering insured that each function’s
arguments were fixed when it was evaluated.

66

Each function was evaluated for all combinations of its
determinant factors. The resulting function values were used to
generate 1 or more blocks having fixed values to replace the
function of the original FD block. Each function’s evaluation
used the blocks of the previous evaluation, so that after all the
evaluations were done, the generated blocks were in FV form.

With the block from the original request in FV form, the
service processed it as usual, with other FD blocks in the
partition converted to FV blocks as needed. At times there
were too many blocks in a partition to process all at once.
When this happened the blocks were automatically grouped
into bundles for sequential processing.

C. Test Models
1) Simple constraint models
The embedded functions feature was used with 6 simple

test models to illustrate test case generation in conformance
with constraints. Each of the first 5 examples used 1 dependent
factor having values from 1 function in a single FD block. The
examples were the Calendar example above and 4 constraints
examples (in Table III) from Appendix D of [8]. Descriptions
of the examples, their test case generation requests and
embedded function listings were given in Section III of [1].

Reference [10] introduced FD equivalence class factors,
which indicate classes of expected results. In a test design
equivalence class factors can insure selected classes are
covered. Without equivalence class factors, the Body Mass
Index (BMI) example (Table X in [10]), required a strength 4
design with 24 test cases to associate each class of results with
its nondeterminant factor values in 1 partition [10]. Here the
BMI example used 3 embedded functions in a strength 2
design in 1 partition. The goal was to reach the selected classes
of results and to associate them with their nondeterminant
factor values.

2) Shopping cart models
The primary example was an online shopping cart

described in [1] and Section 6.4 of [8]. Additional details and
related models were given in [11]. A summary of the model is
recapped in this section to convey the methods and to clarify
the few differences between the model proposed [1] and the
one used here.

Fig. 1 illustrates the shopping cart, containing 3 different
items. The items can be checked for deletion (and unchecked).
New quantities can be entered. The update button effects these
changes. The shop and checkout buttons take the user to the
previous shopping page and the payment page respectively.

TABLE III. FOUR SIMPLE CONSTRAINTS

Example Constraint
Constraint 1 (OS = “Windows”) => (Browser = “IE” ||

Browser = “Firefox” || Browser = “Netscape”)
Constraint 2 (P1 > 100) || (P2 > 100)
Constraint 3 (P1 > P2) => (P3 > P4)
Constraint 4 (P1 = true || P2 >= 100) => (P3 = “ABC”).

Fig. 1. Online shopping cart

The test model was based on a UML state machine. The
state machine helped to associate input combinations with
equivalence classes: Each target state represented an
equivalence class. Constraints in the example included the
following. Triggers target one specific state to avoid masking;
items in different positions must be different; and when there
are empty positions in the cart, their factor values will not be
applicable in the test cases. Previously 33 manually selected
FV blocks defined the partition of this example. With
embedded functions, the number of (FD) blocks was reduced
to 3 by using 9 simple functions.

Fig. 2 shows a state diagram for the shopping cart.
Transitions among the lowest-level (leaf) states were to be
tested. The example focused on transitions from the
nonemptyCart state to the nonemptyCart state via the CHECK,
QTY and UPDATE events. The partition was designed for one
target state (one equivalence class), the nonemptyCart state, to
avoid masking.

Table IV lists the test factors and their values for the
shopping cart example. Where applicable, the functions
returning values are given. An indication for the meaning of
each test factor is also listed. Up to 3 different items are placed
in the shopping cart for testing. Each is in a different cart
position (0, 1 or 2), and the corresponding test factors have that
index.

Fig. 2. State diagram for shopping cart

67

TABLE IV. TEST FACTORS, VALUES AND FUNCTIONS FOR SHOPPING
CART EXAMPLE

Test
Factor

Test Factor
Values

Functions Indication

$newItem NULL Item to place in cart
$n 1 2 3 Number of items in cart
$delChk[0] 0 1 f_delChk_CQ

f_delChk_U
Delete box checked in
cart position 0

$item[0] itemA itemB
itemC

f_item Item in cart position 0

$qty[0] 1 2 10 f_qty Quantity of item in cart
position 0

$newQ[0] 0 1 2 10 f_newQ_CQ
f_newQ_U

New quantity shown in
cart position 0

$delChk[1] 0 1 NULL f_delChk_CQ
f_delChk_U

Delete box checked in
cart position 1

$item[1] itemA itemB
itemC NULL

f_item Item in cart position 1

$qty[1] 1 2 10 NULL f_qty Quantity of item in cart
position 1

$newQ[1] 0 1 2 10
NULL

f_newQ_CQ
f_newQ_U

New quantity shown in
cart position 1

$delChk[2] 0 1 NULL f_delChk_CQ
f_delChk_U

Delete box checked in
cart position 2

$item[2] itemA itemB
itemC NULL

f_item Item in cart position 2

$qty[2] 1 2 10 NULL f_qty Quantity of item in cart
position 2

$newQ[2] 0 1 2 10
NULL

f_newQ_CQ
f_newQ_U

New quantity shown in
cart position 2

$i 0 1 2 NULL f_i Cart position for event
$q 0 1 2 10

NULL
 Quantity for event

state nonemptyCart Source state
event CHECK($i)

QTY($i,$q)
UPDATE

f_event_CHECK
f_event_QTY

Trigger to target state

Some test factors can take the value NULL, which means
the factor is not used or not applicable. The $newItem factor
has the value NULL because there are no new items to place in
the cart in this partition. In the nonemptyCart state there always
is an item in position 0, so the corresponding values are not
NULL. However when there are fewer than 3 different items in
the cart, positions 1 and 2 may be unused. Then the
corresponding values are NULL.

The 9 functions are listed in Table IV. In this model the
same function was used for all the positions of the indexed
factors in each block. The functions are briefly described in the
following list, and their PHP definitions are given in [6].

• f_delChk_CQ($position,$n) returns values 0 (unchecked) and 1
(checked) for used positions (<$n); returns NULL for unused
positions (>=$n); for use with CHECK and QTY events.

• f_delChk_U($position,$n,$chkd1,$zero1,$chkd2,$zero2) returns
values 0 (unchecked) and 1 (checked) for used positions (<$n); returns
NULL for unused positions (>=$n); returns 0 if $chkd1 and $chkd2
are both 1, or if $zero1 and $zero2 are both 0, to constrain the
transition to the nonemptyCart state after the UPDATE event.

• f_item($position,$n,$skip1,$skip2) in used positions returns items
different from items in previous positions (<$position); returns NULL
for unused positions.

• f_qty($position,$n) returns nonzero allowed values for current
quantities in used positions; returns NULL for unused positions.

• f_newQ_CQ($position,$n) returns allowed values for new quantities
selected by the QTY($i,$q) event; returns NULL for unused positions;
for use with CHECK and QTY events.

• f_newQ_U($position,$n,$chkd1,$zero1,$chkd2,$zero2) returns
allowed values for new quantities selected by the QTY($i,$q) event;
returns NULL for unused positions; returns nonzero quantity values if
$chkd1 and $chkd2 are both 1, or if $zero1 and $zero2 are both 0, to
constrain the transition to the nonemptyCart state after the UPDATE
event.

• f_i($n) returns the used position values for the CHECK($i) and
QTY($i,$q) events.

• f_event_CHECK($i) returns the CHECK event to check/uncheck the
deletion box in position $i.

• f_event_QTY($i,$q) returns the QTY event to select a new quantity
$q for the quantity box in position $i.

Table V shows the partition for this example using DPB
notation (in 2 columns). There are 3 blocks, for the
CHECK($i), QTY($i,$q) and UPDATE events respectively.

Compared to the earlier model [1], functions f_delChk_CQ
and f_delChk_U replaced f_delChk, and functions
f_newQ_CQ and f_newQ_U replaced f_newQ. These changes
made 2 improvements. First, use of f_delChk_CQ and
f_newQ_CQ in the CHECK and QTY blocks allowed for all
items to be marked for deletion and for their selected quantities
to be zero when the event was not UPDATE. That is, the target
state remained nonemptyCart. Second, both f_delChk_U and
f_newQ_U used $delChk and $newQ values for previous items
to insure that the UPDATE event targeted the nonemptyCart
state.

III. STRENGTH 2 RESULTS
Table VI presents a summary of the strength 2 results. The

FV examples used manually selected fixed values; the EF
examples used automatically evaluated embedded functions.
The table lists the corresponding array parameters. The blocks
column gives the number of FV blocks, either manually
selected (for the FV examples), or automatically generated (for
the EF examples). The combinations column shows the
numbers of pairwise combinations. The total depends on the
numbers of values for all factors; the residue is the number not
covered due to constraints. The response time for each request
is the difference between its start and stop log entries.
Consequently fractions of seconds were truncated.

The Calendar, Constraint 1 and Constraint 2 examples
(Tables II and III) were run both with manually selected fixed
values and with embedded functions. Each FV example used
the number of FV blocks given in Table VI; each EF example
used 1 functionally dependent block which led to the same
number of FV blocks after evaluation. Corresponding FV and
EF examples covered the same numbers of combinations and
generated the same test cases.

In the Constraint 3 EF example the values for factor P4
were given by the function fP4, which depended on the values
of 3 determinant factors $P1, $P2, $P3. From 1 FD block 21
FV blocks were generated automatically; they led to 37 test
cases. All pairwise combinations were covered while
conforming to Constraint 3.

68

TABLE V. PARTITION FOR SHOPPING CART EXAMPLE

nonemptyCart to nonemptyCart with PHP Functions
Shopping Cart Example - transition design
$newItem
$n
$delChk[0]
$item[0]
$qty[0]
$newQ[0]
$delChk[1]
$item[1]
$qty[1]
$newQ[1]
$delChk[2]
$item[2]
$qty[2]
$newQ[2]
$i
$q
state
event
#NN nonemptyCart to nonemptyCart
+ nonemptyCart to nonemptyCart; CHECK
NULL
1 2 3
f_delChk_CQ(0,$n)
f_item(0,$n,,)
f_qty(0,$n)
f_newQ_CQ(0,$n)
f_delChk_CQ(1,$n)
f_item(1,$n,$item[0],)
f_qty(1,$n)
f_newQ_CQ(1,$n)
f_delChk_CQ(2,$n)
f_item(2,$n,$item[0],$item[1])
f_qty(2,$n)
f_newQ_CQ(2,$n)
f_i($n)
NULL
nonemptyCart
f_event_CHECK($i)

+ nonemptyCart to nonemptyCart; QTY
NULL
1 2 3
f_delChk_CQ(0,$n)
f_item(0,$n,,)
f_qty(0,$n)
f_newQ_CQ(0,$n)
f_delChk_CQ(1,$n)
f_item(1,$n,$item[0],)
f_qty(1,$n)
f_newQ_CQ(1,$n)
f_delChk_CQ(2,$n)
f_item(2,$n,$item[0],$item[1])
f_qty(2,$n)
f_newQ_CQ(2,$n)
f_i($n)
0 1 2 10
nonemptyCart
f_event_QTY($i,$q)

+ nonemptyCart to nonemptyCart; UPDATE
NULL
1 2 3
f_delChk_U(0,$n,1,0,1,0)
f_item(0,$n,,)
f_qty(0,$n)
f_newQ_U(0,$n,1,0,1,0)
f_delChk_U(1,$n,$delChk[0],$newQ[0],1,0)
f_item(1,$n,$item[0],)
f_qty(1,$n)
f_newQ_U(1,$n,$delChk[0],$newQ[0],1,0)
f_delChk_U(2,$n,$delChk[0],$newQ[0],$delChk[1],$newQ[1])
f_item(2,$n,$item[0],$item[1])
f_qty(2,$n)
f_newQ_U(2,$n,$delChk[0],$newQ[0],$delChk[1],$newQ[1])
NULL
NULL
nonemptyCart
UPDATE

In the Constraint 4 EF example the values for factor P3

were given by the function fP3, which depended on the values
of 2 determinant factors $P1, $P2. In this example the values
for $P1 were interpreted as the Boolean constants TRUE and
FALSE. From 1 FD block 3 FV blocks were generated; they
led to 12 test cases.

The BMI EF example used 1 FD block with 5 test factors
and 3 equivalence class factors. Each of the Medicare, Child
and Adult equivalence class factors used 1 function to identify
the classes of its expected results. Each function was evaluated
for all combinations of its determinant factor values, so all
allowed classes were included in the equivalence class factor’s
values. Each of these classes was paired with all allowed test
factor values. The 14 test cases reached 10 equivalence classes
and covered with nondeterminant strength 2 [10].

The Shopping cart FV and EF examples were very similar,
but differences in their test models prevented identical results.
The FV example used manually selected blocks. To limit their
number to 33, not all permutations of itemA, itemB and itemC
occurred in the n positions: Position 0 had any of the 3 items;
position 1 had itemB or itemC; position 2 had only itemC. The

simplification was justified because all items were equivalent;
what mattered in the example was that different items were in
different positions. This simplification was unnecessary in the
Shopping cart EF example; the embedded functions allowed
for all permutations of items in $n = 1, 2 or 3 positions by
generating more blocks.

The Shopping cart EF example used 3 FD blocks, 1 for
each of the CHECK, QTY and UPDATE events. The blocks
required evaluation of 14, 14 and 12 instances of embedded
functions respectively.

The order of evaluation for each block turned out to be the
order given in the request, shown in Table V. However the
ordering was necessary because there were several composite
relations among the functions, as shown in Table V. For
example, in the case of function f_item, when there were
$n = 3 items, value(s) returned depended on earlier instances:

f_item: (0,$n,,) � $item[0]
f_item: (1,$n,$item[0],) � $item[1]
f_item: (2,$n,$item[0],$item[1]) � $item[2]

69

TABLE VI. STRENGTH 2 RESULTS

Example Array parameters
(N;t,k,v1

k1…vs
ks)

Blocks Combinations
Total:Residue

Response time
HH:MM:SS

Calendar FV (40;2,3,1216131) 5 126:38 00:00:01
Calendar EF (40;2,3,1216131) 5 126:38 00:00:01
Constraint 1 FV (5;2,2,3121) 2 6:1 00:00:01
Constraint 1 EF (5;2,2,3121) 2 6:1 00:00:00
Constraint 2 FV (16;2,2,52) 2 25:9 00:00:01
Constraint 2 EF (16;2,2,52) 2 25:9 00:00:00
Constraint 3 EF (37;2,4,54) 21 150:0 00:00:01
Constraint 4 EF (12;2,3,513121) 3 31:8 00:00:00
Body Mass Index EF (14;2,8, 513225) 10 189:36 00:00:01
Shopping cart FV (91;2,18,1615344362212) 33 2291:431 00:00:02
Shopping cart EF (98;2,18,1615346352112) 183 2499:383 00:00:09

In the Shopping cart FV example the 33 manually selected

blocks were distributed as 6 for the CHECK event, 24 for the
QTY event and 3 for the UPDATE event. In the Shopping cart
EF example 183 FV blocks were generated, 25, 100 and 58
respectively for the CHECK, QTY and UPDATE events.
Compared to the FV example, the EF example generated 8%
more test cases while covering 14% more combinations.

IV. VARIABLE STRENGTH METHODS
Often combinatorial test designs use a fixed strength t to

define the coverage among test factor values. All allowed t-
tuples among the k test factors are required to be covered. As t
increases the coverage improves, and the cost of testing (e.g.
number of test cases) increases. Variable strength [5] adds
flexibility to cover a subset of k’ test factors with higher
strength t’, while the rest of the factors retain strength-t
coverage. Variable strength designs can enable additional test
coverage in areas of particular importance or risk. Thus it
offers cost-benefit choices beyond those of fixed strength
alone. This section describes methods for variable strength
designs using functionally dependent hybrid factors.

A. Functionally Dependent Hybrid Factors
A hybrid factor represents all the allowed combinations of

values among 2 or more test factors. Williams and Probert used
a hybrid factor to replace two interdependent test factors with 1
factor independent of the others [12]. Here embedded functions
are used to handle such constraints. But including hybrid
factors in a test design enables associations among
combinations of factors (represented by the hybrid factors) and
other individual factors.

Consider k test factors named $a, $b, $c, … and the
function pair($a,$b), shown in Table VII, which returns the 2-
tuple ($a,$b) when called. Table VIII illustrates a design for
k = 8 test factors. Factor $b has 3 values; all the other test
factors have 2. Two functionally dependent factors, named
($a,$b) and ($c,$d), are included in the design (for a total of
K = 10 factors). Factors ($a,$b) and ($c,$d) have values given
by the functions pair($a,$b) and pair($c,$d), and thus represent
the respective pairs. When all pairs of ($a,$b) and ($c,$d) are
covered, the subarray consisting of factors $a $b $c $d is
covered with strength t’ = 4.

TABLE VII. PAIRING FUNCTION TO COMBINE TWO FACTORS

PHP Function pair($a,$b)
<?php
function pair($a,$b) {
 return('('.$a.','.$b.')'); # return the pair of arguments given
}
?>

The subarray of $a $b $c $d is called the nominal subarray
to distinguish it from other higher strength subarrays that may
result from the hybrid factors. In this formulation the nominal
subarray has k’ test factors and strength t’, with t � t’ � k’ � k.
Examination of Table VIII shows that all 24 combinations of
$a, $b, $c and $d are included in test cases. Moreover, all 12
combinations of $a, $b and any other test factor are covered; all
combinations of $c, $d and any other test factor are covered
also.

In this example there are no constraints among the original
test factors. That characteristic is not changed by the inclusion
of the pairing factors. But the resulting array does have
constraints. For example, the value $a = 1 cannot be associated
with the pair ($a,$b) = (0,0).

Using pairing functions for variable strength is compatible
with constraints among test factors. Specifically, when a
pairing function factor is appended to an FD block, it insures
that all pairs of $a and $b are represented by its ($a,$b) values
in that block and in the subsequent FV blocks. And if the
values of $a and $b include functions of other test factors, the
support for composite functions enables the design to follow
the corresponding constraints. When the pairing function
appears in all the blocks of a partition, it results in a pairing
factor, which conforms to the constraints implied by the set of
all combinations of the FV blocks.

TABLE VIII. VARIABLE STRENGTH TEST CASES

 $a $b $c $d $e $f $g $h ($a,$b) ($c,$d)
1 1 1 1 1 0 0 0 0 (1,1) (1,1)
2 0 2 0 0 1 1 1 0 (0,2) (0,0)
3 1 0 1 0 1 1 0 1 (1,0) (1,0)
4 0 1 0 1 1 0 1 1 (0,1) (0,1)
5 0 0 1 1 0 1 1 1 (0,0) (1,1)
6 1 2 0 1 0 0 0 0 (1,2) (0,1)
7 0 0 0 0 0 0 0 0 (0,0) (0,0)
8 1 1 0 0 0 1 1 1 (1,1) (0,0)
9 1 2 1 0 1 0 1 1 (1,2) (1,0)

10 0 1 1 0 0 0 0 0 (0,1) (1,0)
11 1 0 0 1 0 0 0 0 (1,0) (0,1)
12 0 2 1 1 0 0 0 0 (0,2) (1,1)
13 1 1 0 1 1 1 1 0 (1,1) (0,1)
14 1 2 1 1 1 1 1 0 (1,2) (1,1)
15 1 0 1 1 1 1 1 0 (1,0) (1,1)
16 0 2 1 0 1 1 0 1 (0,2) (1,0)
17 0 1 1 1 1 1 1 0 (0,1) (1,1)
18 0 0 1 0 1 1 1 0 (0,0) (1,0)
19 1 1 1 0 0 0 0 0 (1,1) (1,0)
20 1 2 0 0 0 0 0 0 (1,2) (0,0)
21 1 0 0 0 0 0 0 0 (1,0) (0,0)
22 0 2 0 1 0 0 0 0 (0,2) (0,1)
23 0 1 0 0 0 0 0 0 (0,1) (0,0)
24 0 0 0 1 0 0 0 0 (0,0) (0,1)

70

A similar tripling function, triple($a,$b,$c), can be used to
append a tripling factor to the design, insuring that all allowed
combinations of $a, $b and $c are associated with the values of
all the other k-3 test factors. These hybrid factors, individually
and in combination, can be used to construct variable strength
designs that apply additional coverage as needed.

B. Pairing Factors
This section describes pairing factors for subarrays with

t’ � 4 and k’ � 6. Examples are given in Table IX.

1) Strength 3 subarrays
Consider p test factors $a, $b, $c, … which are to be

covered with strength t’ = 3. Assign them to 2 disjoint sets of
factors. Because there are only 2 sets, any combination of 3 test
factors must have at least 2 in one set or the other. For each
pair of factors in a set, include a pairing factor in the test
design. Each value of each pairing factor will be associated
with each individual factor’s values, so all allowed 3-tuples
will be covered.

For example, with p = 5, assign $a and $b to the first set,
and $c, $d and $e to the second. Include pairing factor ($a,$b)
from the first set, and ($c,$d), ($c,$e) and ($d,$e) from the
second. Each of the ($a,$b) pairs has a test case with each
value of $c, $d and $e. Similarly, each pair from the second
set, e.g. ($c,$d), is associated with $a and $b. This ($c,$d) pair
is associated with $e as well. All the pairs are associated with
the other individual factors, so these 4 pairing factors insure
t’ = 3 coverage of the 5 test factors.

Generally q factors can be chosen for the first set and the
remaining p-q for the second. The total number of pairing
factors C(q,2) + C(p-q,2) is minimized when q = p/2 if p is
even, or when q = (p-1)/2 if p is odd; the total number of
pairing factors is p(p-2)/4 or (p-1)2/4 respectively. In Table IX
the subarrays following this construction are marked with an
asterisk (*). In the (t’,k’) = (2,2) case, p = 3, and the strength-3
subarray includes a test factor outside the nominal subarray,
which includes factors $a and $b. In the other cases p = k’.
When p = 4, the nominal subarray covers with t’ = 4.

2) Strength 4 subarrays
To cover k’ test factors with strength 4, pairs of pairing

factors can be used. For k’ = 4, the 2 pairing factors ($a,$b) and
($c,$d) associate all combinations of the 4 factors, as shown in

Table VIII. Typically a subset of the C(k’,2) factor pairs is
sufficient to cover all combinations of 4 factors. In the
(t’,k’) = (4,5) case (Table IX), when the pairs of pairing factors
include distinct individual factors (e.g. ($a,$b) with ($d,$e)), 4
of the 5 factors are associated. There are 5 such pairs of pairing
factors, and each covers a different combination of 4 test
factors. Thus the 5 pairing factors insure the subarray covers
with strength t’ = 4. In the k’ = 6 example, only 10 of the 15
possible pairing factors are needed.

C. Tripling Factors
Examples of tripling and pairing factors for subarrays with

t’ � 6 and k’ � 6 are given in Table IX. As mentioned above, a
hybrid factor using a tripling function, e.g. triple($a,$b,$c),
may be used to cover 4-tuples. A subarray of 5 test factors can
be covered with strength 5 using 1 tripling factor and 1 pairing
factor containing 5 distinct test factors: All allowed triples and
pairs are combined. In the (t’,k’) = (5,6) case, 4 tripling factors
containing the 6 test factors enable strength 5 coverage: Each
of the 6 pairs of tripling factors combines 5 of the 6 test factors.
And finally, 2 tripling factors containing 6 distinct test factors
cover 6 test factors with strength 6.

D. Associated Subarrays
The coverage due to hybrid factors extends beyond the

nominal subarray in variable strength designs. There are
associated subarrays of higher strength which contain some or
all of the nominal subarray factors. Their effect is to extend the
higher strength associations beyond the nominal subarray. For
example, in the (t’,k’) = (5,5) case, there are C(5,3) strength 3
arrays in the nominal subarray. And each of the
C(3,2) + C(2,2) pairs from the hybrid factors is paired with k-5
other, individual test factors. So there is a total of 4k-10
strength 3 subarrays due to the 2 hybrid factors. Similarly, the
tripling factor leads to k-3 strength 4 subarrays. Numbers of
associated subarrays of strength 3 and 4, n(3) and n(4), are given
for the examples in Table IX.

V. VARIABLE STRENGTH RESULTS

A. Examples without Test Factor Constraints
Table X presents results for the 10 variable strength

examples of Table IX, with k = 8 test factors. The results
without hybrid factors, VS (2,8), are shown also. Details of
these results are available in [6].

TABLE IX. HYBRID FACTORS FOR HIGHER STRENGTH

Factors of
nominal subarray

 (t’,k’) Hybrid pairing/tripling factors Associated subarrays
n(3) n(4)

$a $b * (2,2) ($a,$b) k-2
$a $b $c (3,3) ($a,$b,$c) 3k-8 k-3
$a $b $c $d * (4,4) ($a,$b) ($c,$d) 2k-4 1
$a $b $c $d $e * (3,5) ($a,$b)

($c,$d) ($c,$e) ($d,$e)
4k-10 3

 (4,5) ($a,$b) ($a,$e) ($b,$c) ($c,$d) ($d,$e) 5k-15 5
 (5,5) ($a,$b,$c) ($d,$e) 4k-10 k-3
$a $b $c $d $e $f * (3,6) ($a,$b) ($a,$c) ($b,$c)

($d,$e) ($d,$f) ($e,$f)
6k-16 9

 (4,6) ($a,$b) ($a,$c) ($a,$f) ($b,$c) ($b,$d)
($c,$d) ($c,$e) ($d,$e) ($d, $f) ($e,$f)

10k-40 15

 (5,6) ($a,$b,$c) ($a,$d,$e) ($b,$d,$f) ($c,$e,$f) 12k-52 4k-9
 (6,6) ($a,$b,$c) ($d,$e,$f) 6k-16 2k+3

71

As in the example of Table VIII, factor $b has 3 values; all
the other test factors have 2. All combinations of test factors
are allowed: Each request contains 1 block with fixed test
factor values and the indicated number of hybrid factors with
FD values.

Table X gives the array parameters using the hybrid factors.
The numbers of hybrid factors (k(2),k(3)) are the numbers of
pairing and tripling factors corresponding to each example in
Table IX; the numbers of associated subarrays of strength 3
and 4 (n(3),n(4)) are given for k = 8. The blocks column gives the
number of FV blocks after all functions have been evaluated.
The combinations column shows the numbers of pairwise
combinations, as in Table VI. The response time for each
request is the difference between its start and stop log entries
(fractions of seconds are truncated).

Constraints among the hybrid factors are apparent: The VS
(4,5) example has subarrays of test factors with t’ = 4, so
N � 3123 = 24. Without constraints the 2 factors with 6 values
would suggest a value for N of at least 36. But these are the
pairing factors ($a,$b) and ($b,$c), for which there are only 12
allowed combinations.

B. Examples with Test Factor Constraints
This section presents variable strength results for the

shopping cart example. Embedded functions are used for
conformance to test model constraints as well as for higher
strength subarrays.

The shopping cart example presented in Section II is reused
here with hybrid factors to increase the strength of a subarray
of 6 test factors: $delChk[0], $newQ[0], $delChk[1],
$newQ[1], $delChk[2] and $newQ[2]. Results for strengths
3 � t’ � 6 are compared. In addition to the earlier model (SCA),
which uses parameters intended for a pairwise design, a second
model (SCB) uses a parameter adjustment to improve its
suitability for higher strengths.

The SCB model reduces the number of item quantity values
from 5 (0, 1, 2, 10 and NULL) to 4 (0, 1, 2 and NULL). This is
accomplished by removing the value 10 from the functions
f_qty, f_newQ_CQ and f_newQ_U, and by removing 10 from
the values of $q in the QTY block. This has the effect of
reducing the number of values for 1 test factor from 16 to 13, 3
test factors from 5 to 4, 3 test factors from 4 to 3 and 1 test
factor from 3 to 2. Consequently SCB response times are
reduced considerably.

Table XI shows the variable strength results for shopping
cart models SCA and SCB. Strength 2 results without hybrid
factors, SCA (2,18) and SCB (2,18) also are shown. The table
gives array parameters including the hybrid factors, the
numbers of hybrid factors (k(2),k(3)) and associated subarrays of
strength 3 and 4 (n(3),n(4)). The blocks column gives the number
of FV blocks after all functions have been evaluated. The
combinations column shows the numbers of pairwise
combinations, as in the tables above. The response time for
each request is the difference between its start and stop log
entries.

Each of the SCA and SCB examples used 3 FD blocks, 1
for each of the CHECK, QTY and UPDATE events. Function

evaluation for SCA (2,18) yielded 25, 100 and 58 FV blocks
respectively for the CHECK, QTY and UPDATE events. Each
of the higher strength SCA examples had 9608, 38432 and
2442 FV blocks respectively. Function evaluation for SCB
(2,18) yielded 25, 75 and 58 FV blocks respectively for the
CHECK, QTY and UPDATE events. Each higher strength
SCB example had 4110, 12330 and 974 FV blocks
respectively.

Fig. 3 plots the response times on a logarithmic scale. The
times for the higher strength SCA examples were from 12 to 60
times longer than those for SCB. However the response time
rankings by strength were the same for both models: t’ = 3, 6,
4, 5, from shortest to longest.

Fig. 4 plots the numbers of test cases generated. For t’ = 3,
4 and 6, the SCA examples had about twice the number of test
cases as the corresponding SCB example; for t’ = 5, the ratio
was 2.7. Again, the rankings by strength were the same for
both models: t’ = 3, 4, 6, 5, from fewest to most test cases.

VI. DISCUSSION
This section interprets the results and relates them to the

objectives for this work.

1. Specify constraints among test factors with simple
functions in an established programming language.

Constraints were described in a language familiar to
software engineers to enhance usability and efficiency.
Dependent factor values were defined as functions of other,
determinant factor values.

The 6 small, strength 2 examples of Table VI, used a total
of 9 PHP functions. The longest function had 28 lines; the
others had 12 or fewer lines.

The Shopping cart EF request used 9 functions in 3 blocks
(11 times fewer than the number of blocks in the FV request)
to describe the test factor space more completely. The length of
each function was less than 15 lines; 6 of the functions were
under 10 lines.

2. Evaluate composite, embedded functions automatically to
generate test cases conforming to test model constraints.

Automatic evaluation of the functions is important for
efficient test design in fast-paced development projects. The
complexity of real systems requires composite relations among
the embedded functions.

The Calendar, Constraint 1 and Constraint 2 EF examples
generated test cases identical to their manually selected FV
counterparts. Examination of the test cases for the Constraint 3
and Constraint 4 EF examples indicated conformance to the
required constraints. The BMI example showed that strength 2
designs can reach equivalence classes having multiple
determinant factors and can pair the classes with their
nondeterminant factors.

The Shopping cart EF request used 40 instances of 9
functions in 3 FD blocks. The composite relations among these
functions were evident in Table V. The resulting test cases
have been made available for examination of their
conformance to the constraints defined by the functions.

72

TABLE X. VARIABLE STRENGTH RESULTS FOR 8 TEST FACTORS

Example (t’,k’) Array parameters
(N;t,K,v1

k1…vs
ks)

Hybrid
factors
(k(2),k(3))

Associated
subarrays
(n(3),n(4))

Blocks Combinations
Total:Residue

Response time
HH:MM:SS

VS (2,8) (8;2,8,3127) (0,0) (0,0) 1 126:0 00:00:01
VS (2,2) (16;2,9,613127) (1,0) (6,0) 6 228:18 00:00:01
VS (3,3) (28;2,9,1213127) (0,1) (16,5) 12 330:48 00:00:00
VS (4,4) (24;2,10,61413127) (2,0) (12,1) 24 320:26 00:00:00
VS (3,5) (26;2,12,61433127) (4,0) (22,3) 48 552:66 00:00:01
VS (4,5) (29;2,13,62433127) (5,0) (25,5) 48 762:124 00:00:02
VS (5,5) (48;2,10,121413127) (1,1) (22,5) 48 446:56 00:00:01
VS (3,6) (30;2,14,62443127) (6,0) (32,9) 96 926:140 00:00:02
VS (4,6) (36;2,18,63473127) (10,0) (40,15) 96 1856:382 00:00:02
VS (5,6) (64;2,12,122823127) (0,4) (44,23) 96 1398:464 00:00:03
VS (6,6) (96;2,10,121813127) (0,2) (32,19) 96 562:72 00:00:02

3. Generate variable strength designs using embedded
functions.

Section IV introduced hybrid factors to represent allowed
combinations of values among 2 or more test factors. The
hybrid factors used embedded pairing and tripling functions to
increase the strength of selected test factors, the nominal
subarray. Methods for obtaining desired strengths of nominal
subarrays were specified for strength t’ � 6. Designs generated
from these plans in Table IX were summarized in Table X, and
their test cases have been made available for review.

Hybrid factors also led to associated subarrays of higher
strength: 1 pairing factor combined the pairs of 2 test factors
with each of the other k-2 test factors, resulting in k-2
associated subarrays of strength 3. Similarly 1 tripling factor
combined the 3-tuples of 3 test factors with each of the other
k-3 test factors, resulting in k-3 associated subarrays of
strength 4. Table IX listed numbers of associated subarrays of
strength 3 and 4 for each of the variable strength examples.

A variable strength design permits a higher strength focus
on test factors requiring more attention, i.e. the factors of the
nominal subarray. However, the examples of Table IX offer
choices with different emphases on the nominal subarray and
on the associated subarrays. Thus, a (t’,k’) = (6,6) design has a
higher variable strength t’ than a (5,6) design for coverage of
the nominal subarray alone. But the (5,6) design has more
strength 3 and 4 combinations of the nominal subarray factors
with the other test factors. Use of embedded functions enables
a variety of variable strength schemes and offers flexibility to
define other relations for particular test projects.

4. Generate test case designs with suitable response times.
Different test models typically lead to different sets of test

cases. Consequently multiple test case generation runs may be
needed to compare alternate test designs. And during the
course of a development project, test designs may need to
change to reflect system modifications. Thus the usability of a
test case generation tool depends on its response times.

The strength 2 results (Table VI) and the small variable
strength results (Table X) all had prompt response times; each
was less than 10 seconds. The variable strength designs for the
SCB test system had response times ranging from 18 to 47
minutes. Overall the response times are acceptable. And there
are a number of opportunities to improve response time
performance beyond that of this initial implementation.

One element contributing to the response time was the
number of FV blocks generated. All blocks had to be processed
to complete the design; more blocks required more processing
time. For each shopping cart model the number of blocks
needed for the intrinsic constraints of the test model was much
smaller than the total for the higher strength designs. Table XI
showed that for the SCB model the variable strength designs
used about 110 times more blocks than the strength 2 design;
the corresponding response time ratios exceeded 220.

The increased number of blocks was due to a separate
block for each combination of the nominal subarray factor
values. This property was apparent in the numbers of blocks
for the small examples (Table X).

TABLE XI. VARIABLE STRENGTH RESULTS FOR SHOPPING CART EXAMPLES

Example (t’,k’) Array parameters
(N;t,K,v1

k1…vs
ks)

Hybrid
factors
(k(2),k(3))

Associated
subarrays
(n(3),n(4))

Blocks Combinations
Total:Residue

Response time
HH:MM:SS

SCA (2,18) (98;2,18,1615346352112) (0,0) (0,0) 183 2499:383 00:00:09
SCA (3,6) (329;2,24,2111611311219181615346352112) (6,0) (92,9) 50482 9518:2428 03:42:02
SCA (4,6) (347;2,28,211201161131121101928171615346352112) (10,0) (140,15) 50482 16839:5440 07:28:12
SCA (5,6) (1241;2,22,8412612411911615346352112) (0,4) (164,63) 50482 21191:9587 47:23:23
SCA (6,6) (656;2,20,3712411615346352112) (0,2) (92,39) 50482 7901:1883 06:16:06
SCB (2,18) (55;2,18,13146372212) (0,0) (0,0) 158 1879:307 00:00:05
SCB (3,6) (164;2,24,13210191716246372212) (6,0) (92,9) 17414 6208:1543 00:18:38
SCB (4,6) (180;2,28,1321211019181736246372212) (10,0) (140,15) 17414 10543:3228 00:36:06
SCB (5,6) (457;2,22,39120118115113146372212) (0,4) (164,63) 17414 10764:4322 00:47:20
SCB (6,6) (319;2,20,22118113146372212) (0,2) (92,39) 17414 4835:1142 00:18:52

73

Fig. 3. Response times for variable strength shopping cart examples

Fig. 4. Numbers of test cases for variable strength shopping cart examples

During evaluation of each hybrid function (a pairing or
tripling function), each combination of its determinant factors
had a separate block. Evaluation of each subsequent hybrid
function led to a separate block for each of its combinations, so
the number of resulting blocks was the product of all its
combinations with those of the previously evaluated hybrid
functions. Thus, after evaluation was complete, there was a
separate block for each combination of the nominal subarray
factors. However the constant number of blocks could not
account for the response time differences among the variable
strength designs: The blocks had different factor values.

The variable strength response times did not simply rise
monotonically with strength in these examples. It is interesting
to note that the response time rankings followed the increasing
numbers of associated subarrays (Table XI). The strength 2
design had no associated subarrays and the shortest response
time. The t’ = 3 and 6 designs had the next longer response
times. These designs both had 92 associated subarrays of
strength 3, and they had 9 and 39 associated subarrays of
strength 4 respectively. The t’ = 4 and 5 designs had the
longest response times, and they had 140 and 164 associated
subarrays of strength 3 respectively. If this observation holds
generally, Table IX would suggest choosing t’ = k’ or t’ = 3 for
shorter variable strength response times.

5. Generate test case designs with practical sizes.
One of the most important elements of cost in a

development project is the number of its test cases. Each case
requires time to set up, execute, analyze, and oftentimes rerun.
An efficient set of test cases of minimal size is essential.

The strength 2 results (Table VI) showed that the Calendar,
Constraint 1 and Constraint 2 EF examples generated the same
numbers of test cases as their manually selected FV
counterparts. No additional cost in test cases was evident. The
Shopping cart EF example generated 98 test cases, while the
Shopping cart FV example generated 91. The difference was
attributed to a more thorough coverage of the test factor space
by the embedded functions test model.

Variable strength models led to additional test cases versus
those for strength 2. In the small variable strength results
(Table X), the test case ratio for VS (4,4) vs. VS (2,8) was 3.

Ratios for (t’,k’) = (3,5), (4,5), and (5,5) were approximately 3,
4 and 6 respectively. The VS ratios for k’ = 6 ranged from 4
to 12. For the SCB model (Table XI), test case ratios for
SCB (3,6), (4,6), (5,6) and (6,6) were approximately 3, 3, 8
and 6 respectively compared with those for strength 2.

REFERENCES
[1] G. B. Sherwood, “Embedded functions in combinatorial test designs,”

Proceedings of the 2015 IEEE Eighth International Conference on
Software Testing, Verification and Validation Workshops, Graz: 2015,
pp. 1-10.

[2] K. Tatsumi, “Test case design support system,” Proceedings of the
International Conference on Quality Control, Tokyo: 1987, pp. 615-620.

[3] G. B. Sherwood, “Effective testing of factor combinations,” Third
International Conference on Software Testing, Analysis & Review,
Washington, DC: May 1994, pp. 151-166.

[4] J. Czerwonka, “Pairwise testing in the real world: Practical extensions to
test-case scenarios. Proceedings of the Twenty-fourth Annual Pacific
Northwest Software Quality Conference, Portland, OR: 2006, pp. 419-
430.

[5] M. B. Cohen, P. B. Gibbons, W. B. Mugridge, C. J. Colbourn, J. S.
Collofello, “Variable strength interaction testing of components,”
Proceedings of the 27th Annual International Computer Software and
Applications Conference, Dallas:2003, pp. 413-418.

[6] Testcover.com, LLC. (2016). Embedded Functions Examples. Retrieved
January 5, 2016, from Testcover.com:
http://testcover.com/pub/background/examples2016.php.

[7] M. Achour, F. Betz, A. Dovgal, et al., PHP Manual. Retrieved January
5, 2016, from the PHP Group: http://php.net/manual/en/index.php.

[8] D. R. Kuhn, R. N. Kacker and Y. Lei, Introduction to Combinatorial
Testing, CRC Press, Boca Raton, FL: 2013.

[9] Testcover.com, LLC. (2013). Fixed Values Procedure. Retrieved
January 5, 2016, from Testcover.com:
http://testcover.com/pub/fvproc.php.

[10] G. B. Sherwood, “Functional dependence and equivalence class factors
in combinatorial test designs,” Proceedings of the 2014 IEEE Seventh
International Conference on Software Testing, Verification and
Validation Workshops, Cleveland, OH: 2014, pp. 108-117.

[11] Testcover.com, LLC. (2013). Shopping Cart Example. Retrieved
January 5, 2016, from Testcover.com:
http://testcover.com/pub/cartsc.php.

[12] A. W. Williams, R. L. Probert, “A practical strategy for testing pair-wise
coverage of network interfaces,” Proceedings of the 1996 Seventh
International Symposium on Software Reliability Engineering, White
Plains, NY: 1996, pp. 246-254.

74

