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Abstract—An embedded functions feature was implemented 
to specify functionally dependent relations among test factors. 
Functions embedded in a combinatorial test case generator 
specified test factor constraints to which the resulting test cases 
conformed. The functions were defined in a general-purpose 
programming language widely used among software engineers. 
Examples with and without embedded functions were compared. 
Embedded functions were used to evaluate equivalence class 
factors to insure coverage of selected classes of results. 
Embedded functions also were used to evaluate hybrid factors in 
variable strength designs. Usability and performance 
characteristics were described. 

Keywords—combinatorial testing; constraints; coverage 
analysis; embedded function; equivalence class; equivalence 
partitioning; functional dependence; interaction testing; PHP; test 
case generation; test design; variable strength 

I. INTRODUCTION 
Combinatorial testing generates relatively small sets of test 

cases for complex systems. Such a system has k test factors 
(e.g. test configuration choices and input parameters). The 
systematic application of combinations of test factor values (t-
tuples, with t < k) significantly reduces the number of test cases 
versus those of all combinations. These strength t test cases can 
result in more effective testing and higher quality compared 
with other test case selection methods. 

This work reports on a project to improve the usability and 
efficiency of conforming to system constraints in combinatorial 
testing. Functionally dependent relations appear as constraints 
in test models. A test factor is functionally dependent when its 
value is identified by those of its determinant factors. E.g., to 
test using a date input, the value of last_day(month,year) may 
be needed to verify month boundaries. Reference [1] proposed 
using embedded functions (EF) in a combinatorial test tool to 
specify test constraints in a language familiar to software 
engineers. Embedded functions, like last_day above, would 
return values for dependent factors based on the values of 
determinant factors. The relations among the factor values 
would define the constraints for the system under test. 

Test constraints can arise from: (1) test configuration 
requirements, (2) test input requirements, and (3) coverage 
requirements for classes of expected results. Consequences of 
test plans that do not conform to constraints may include: (1) 
impossible or unsupported configurations, (2) inputs that 
cannot be entered or that lead to error cases, and (3) 
insufficient coverage (missing t-tuples) for classes of results. 

All of these situations can lead to masking [2,3,4], which 
reduces the benefit of t-tuple coverage. Masking occurs when a 
required tm-tuple (tm � t) is missing from the test cases for a 
class of results. When test cases (k-tuples) cannot be run, tm-
tuples can be skipped. When t-tuples are distributed among 
disjoint classes of results, some classes can miss expected t-
tuples. Conformance to system constraints is essential for 
effective combinatorial testing. Thus, improved usability for 
constraint conformance is a powerful motivation for embedded 
functions. 

This paper describes an initial implementation of the 
embedded functions feature which was introduced in [1]. 
Examples compare the use of embedded functions with that of 
manually selected, fixed factor values. Examples requiring 
composite relations to describe complex constraints are shown. 
Embedded functions enable the association of values from 2 or 
more factors. An immediate consequence is the possibility of 
generating subarrays of higher strength, i.e. variable strength 
designs with t < t’ and k’ < k factors [5]. The paper offers some 
higher strength schemes and reports on performance 
characteristics of the implementation.  

Overall objectives for the work were as follows. 

1. Specify constraints among test factors with simple 
functions in an established programming language. 

2. Evaluate composite, embedded functions automatically to 
generate test cases conforming to test model constraints. 

3. Generate variable strength designs using embedded 
functions. 

4. Generate test case designs with suitable response times. 
5. Generate test case designs with practical sizes. 

The remainder of the paper consists of the following 
sections, II. General Methods, III. Strength 2 Results, 
IV. Variable Strength Methods, V. Variable Strength Results, 
VI. Discussion. Details for all of the examples of this paper are 
available at Testcover.com [6]. Test case generation requests, 
results and embedded function listings are posted there for 
review. 

II. GENERAL METHODS 

A. User Interface 
PHP [7] was the language selected for embedded functions 

in this project. PHP is broadly used, and it supports both user-
defined and built-in functions. The embedded functions feature 
enhanced Direct Product Block (DPB) notation to accept factor 
values returned from PHP functions. (DPB notation was 
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introduced in Section 6.1.3 of [8].) The test case generation 
request is entered in DPB notation, in a text box on the 
generator form. A summary of DPB notation is presented in 
Table I. The allowed values for each factor appear on a 
separate line in a block. All combinations of factor values in 
the block are allowed. Partitions are sets of blocks. A 
partition’s allowed combinations include all of its blocks’ 
combinations, and no disallowed combinations.  

The first panel of Table II gives an example of DPB 
notation to specify valid dates according to calendar rules. 
Manually selected fixed values (FV) specify the constraints in 
5 FV blocks. The first block specifies days 1 and 10 for all 
months and 3 years; the other 4 blocks include the last day for 
each month. In the enhanced DPB notation, functions can be 
listed as values for dependent factors. In the second panel of 
Table II, the Day factor has 2 fixed values, 1 and 10, and the 
function last_day($month,$year). The function name must 
conform to PHP rules [7] and start with a letter or underscore 
(_). The arguments to the function are the determinant factor 
names $month and $year. Determinant factor names are PHP 
variables, so they are represented by a dollar sign ($) followed 
by the name of the variable. In the second panel, the Day factor 
is functionally dependent (FD), so it is contained in an FD 
block. 

The first two panels of Table II show that the last_day 
function allows the number of blocks in the request to be 
reduced from 5 to 1. It is simple to define this function to 
return the last day for the specified years. Alternatively, the 
third panel of Table I shows how the built-in function 
cal_days_in_month [7] can support a broader range of years.  

TABLE I.  DPB NOTATION SUMMARY 

A request contains the data for one set of test factors. It is a multi-line 
string consisting of an optional heading and 1 or more partitions. 

A heading is a string of 1 or more lines consisting of a request_name 
and optional factor_names. 

A factor_name labels a column of factor values in the results, e.g. 
Browser, $month, $a. A factor_name that is a PHP variable (starting with $) 
can label a determinant factor. 

A partition is a multi-line string containing 1 or more blocks. It 
represents all the allowed combinations of factor values for 1 test case 
generation instance. 

A block contains 2 or more factor_value_lines. All combinations of 
factor values in a block are allowed. The union of all the blocks’ 
combinations defines their partition. 

A factor_values_line is a string containing 1 or more factor values; 
these can be fixed values or embedded functions, e.g. 1 10 
last_day($month,$year). A dependent factor has 1 or more functions among 
its values.  

An embedded function returns a string of 1 or more fixed values; the 
function is 1 of: 

a PHP user-defined function, e.g. last_day($month,$year) 
a PHP internal (built-in) function, e.g. max($a,100) 
or a determinant factor_name, e.g. $a 

A function argument is either a determinant factor_name or a fixed 
value. 

A fixed value is either: a Boolean, e.g. TRUE, or a string, e.g. 100

Types may be changed by context during evaluation. 
 

TABLE II.  EMBEDDED FUNCTION EXAMPLE 

Calendar Partition with Fixed Values 
Calendar Example without last_day function 
Month 
Day 
Year 
#ok All good dates 
jan feb mar apr may jun jul aug sep oct nov dec 
1 10 
2015 2016 2017 
+ long month last day 
jan mar may jul aug oct dec 
31 
2015 2016 2017 
+ short month last day 
apr jun sep nov 
30 
2015 2016 2017 
+ feb last day 
feb 
28 
2015 2017 
+ leap day 
feb 
29 
2016 

Calendar Partition with Function last_day($month,$year) 
Calendar Example with last_day function 
$month 
Day 
$year 
#ok All good dates 
jan feb mar apr may jun jul aug sep oct nov dec 
1 10 last_day($month,$year) 
2015 2016 2017 

PHP Function last_day($month,$year) 
<?php 
function last_day($month,$year) { 
  $mo_num=array('jan'=>1,'feb'=>2,'mar'=>3,'apr'=>4,'may'=>5,'jun'=>6, 
    'jul'=>7,'aug'=>8,'sep'=>9,'oct'=>10,'nov'=>11,'dec'=>12); 
  return(cal_days_in_month(CAL_GREGORIAN, 
    $mo_num[$month],(int)$year)); 
} 
?> 

B. Request Processing 
Examples described here were run on a Testcover.com 

server configured for production, using Intel Xeon ES-2650 
2.00 GHz processors. The server ran Linux 6.7, Apache/2.2.15 
and PHP 5.3.3. Requests were submitted using a browser 
running on the server (Firefox ESR). The response time for 
each request was taken as the difference between its start and 
stop log entries. 

The embedded functions enhancement was implemented in 
the program which processes test case generation requests. An 
automated process converted FD blocks to FV blocks, based on 
the procedure of [9]. The automated process also contained 
proprietary enhancements to limit the number of FV blocks 
generated. 

The program parsed the factor values to find the names and 
arguments of embedded functions. To process composite 
functions, the program ordered the functions of each FD block 
for evaluation. The ordering insured that each function’s 
arguments were fixed when it was evaluated. 
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Each function was evaluated for all combinations of its 
determinant factors. The resulting function values were used to 
generate 1 or more blocks having fixed values to replace the 
function of the original FD block. Each function’s evaluation 
used the blocks of the previous evaluation, so that after all the 
evaluations were done, the generated blocks were in FV form. 

With the block from the original request in FV form, the 
service processed it as usual, with other FD blocks in the 
partition converted to FV blocks as needed. At times there 
were too many blocks in a partition to process all at once. 
When this happened the blocks were automatically grouped 
into bundles for sequential processing. 

C. Test Models 
1) Simple constraint models 
The embedded functions feature was used with 6 simple 

test models to illustrate test case generation in conformance 
with constraints. Each of the first 5 examples used 1 dependent 
factor having values from 1 function in a single FD block. The 
examples were the Calendar example above and 4 constraints 
examples (in Table III) from Appendix D of [8]. Descriptions 
of the examples, their test case generation requests and 
embedded function listings were given in Section III of [1].  

Reference [10] introduced FD equivalence class factors, 
which indicate classes of expected results. In a test design 
equivalence class factors can insure selected classes are 
covered. Without equivalence class factors, the Body Mass 
Index (BMI) example (Table X in [10]), required a strength 4 
design with 24 test cases to associate each class of results with 
its nondeterminant factor values in 1 partition [10]. Here the 
BMI example used 3 embedded functions in a strength 2 
design in 1 partition. The goal was to reach the selected classes 
of results and to associate them with their nondeterminant 
factor values. 

2) Shopping cart models 
The primary example was an online shopping cart 

described in [1] and Section 6.4 of [8]. Additional details and 
related models were given in [11]. A summary of the model is 
recapped in this section to convey the methods and to clarify 
the few differences between the model proposed [1] and the 
one used here. 

Fig. 1 illustrates the shopping cart, containing 3 different 
items. The items can be checked for deletion (and unchecked). 
New quantities can be entered. The update button effects these 
changes. The shop and checkout buttons take the user to the 
previous shopping page and the payment page respectively. 

TABLE III.  FOUR SIMPLE CONSTRAINTS 

Example Constraint 
Constraint 1 (OS = “Windows”) => (Browser = “IE” || 

Browser = “Firefox” || Browser = “Netscape”) 
Constraint 2 (P1 > 100) || (P2 > 100) 
Constraint 3 (P1 > P2) => (P3 > P4) 
Constraint 4 (P1 = true || P2 >= 100) => (P3 = “ABC”). 

 

Fig. 1. Online shopping cart 

The test model was based on a UML state machine. The 
state machine helped to associate input combinations with 
equivalence classes: Each target state represented an 
equivalence class. Constraints in the example included the 
following. Triggers target one specific state to avoid masking; 
items in different positions must be different; and when there 
are empty positions in the cart, their factor values will not be 
applicable in the test cases. Previously 33 manually selected 
FV blocks defined the partition of this example. With 
embedded functions, the number of (FD) blocks was reduced 
to 3 by using 9 simple functions. 

Fig. 2 shows a state diagram for the shopping cart. 
Transitions among the lowest-level (leaf) states were to be 
tested. The example focused on transitions from the 
nonemptyCart state to the nonemptyCart state via the CHECK, 
QTY and UPDATE events. The partition was designed for one 
target state (one equivalence class), the nonemptyCart state, to 
avoid masking. 

Table IV lists the test factors and their values for the 
shopping cart example. Where applicable, the functions 
returning values are given. An indication for the meaning of 
each test factor is also listed. Up to 3 different items are placed 
in the shopping cart for testing. Each is in a different cart 
position (0, 1 or 2), and the corresponding test factors have that 
index. 

 
Fig. 2. State diagram for shopping cart 
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TABLE IV.  TEST FACTORS, VALUES AND FUNCTIONS FOR SHOPPING 
CART EXAMPLE 

Test 
Factor 

Test Factor 
Values 

Functions Indication 

$newItem NULL  Item to place in cart 
$n 1 2 3  Number of items in cart 
$delChk[0] 0 1 f_delChk_CQ 

f_delChk_U 
Delete box checked in 
cart position 0 

$item[0] itemA itemB 
itemC 

f_item Item in cart position 0 

$qty[0] 1 2 10 f_qty Quantity of item in cart 
position 0 

$newQ[0] 0 1 2 10 f_newQ_CQ 
f_newQ_U 

New quantity shown in 
cart position 0 

$delChk[1] 0 1 NULL f_delChk_CQ 
f_delChk_U 

Delete box checked in 
cart position 1 

$item[1] itemA itemB 
itemC NULL 

f_item Item in cart position 1 

$qty[1] 1 2 10 NULL f_qty Quantity of item in cart 
position 1 

$newQ[1] 0 1 2 10 
NULL 

f_newQ_CQ 
f_newQ_U 

New quantity shown in 
cart position 1 

$delChk[2] 0 1 NULL f_delChk_CQ 
f_delChk_U 

Delete box checked in 
cart position 2 

$item[2] itemA itemB 
itemC NULL 

f_item Item in cart position 2 

$qty[2] 1 2 10 NULL f_qty Quantity of item in cart 
position 2 

$newQ[2] 0 1 2 10 
NULL 

f_newQ_CQ 
f_newQ_U 

New quantity shown in 
cart position 2 

$i 0 1 2 NULL f_i Cart position for event 
$q 0 1 2 10 

NULL 
 Quantity for event 

state nonemptyCart  Source state 
event CHECK($i) 

QTY($i,$q) 
UPDATE 

f_event_CHECK 
f_event_QTY 

Trigger to target state 

Some test factors can take the value NULL, which means 
the factor is not used or not applicable. The $newItem factor 
has the value NULL because there are no new items to place in 
the cart in this partition. In the nonemptyCart state there always 
is an item in position 0, so the corresponding values are not 
NULL. However when there are fewer than 3 different items in 
the cart, positions 1 and 2 may be unused. Then the 
corresponding values are NULL. 

The 9 functions are listed in Table IV. In this model the 
same function was used for all the positions of the indexed 
factors in each block. The functions are briefly described in the 
following list, and their PHP definitions are given in [6]. 

• f_delChk_CQ($position,$n) returns values 0 (unchecked) and 1 
(checked) for used positions (<$n); returns NULL for unused 
positions (>=$n); for use with CHECK and QTY events. 

• f_delChk_U($position,$n,$chkd1,$zero1,$chkd2,$zero2) returns 
values 0 (unchecked) and 1 (checked) for used positions (<$n); returns 
NULL for unused positions (>=$n); returns 0 if $chkd1 and $chkd2 
are both 1, or if $zero1 and $zero2 are both 0, to constrain the 
transition to the nonemptyCart state after the UPDATE event. 

• f_item($position,$n,$skip1,$skip2) in used positions returns items 
different from items in previous positions (<$position); returns NULL 
for unused positions. 

• f_qty($position,$n) returns nonzero allowed values for current 
quantities in used positions; returns NULL for unused positions. 

• f_newQ_CQ($position,$n) returns allowed values for new quantities 
selected by the QTY($i,$q) event; returns NULL for unused positions; 
for use with CHECK and QTY events. 

• f_newQ_U($position,$n,$chkd1,$zero1,$chkd2,$zero2) returns 
allowed values for new quantities selected by the QTY($i,$q) event; 
returns NULL for unused positions; returns nonzero quantity values if 
$chkd1 and $chkd2 are both 1, or if $zero1 and $zero2 are both 0, to 
constrain the transition to the nonemptyCart state after the UPDATE 
event. 

• f_i($n) returns the used position values for the CHECK($i) and 
QTY($i,$q) events. 

• f_event_CHECK($i) returns the CHECK event to check/uncheck the 
deletion box in position $i. 

• f_event_QTY($i,$q) returns the QTY event to select a new quantity 
$q for the quantity box in position $i. 

Table V shows the partition for this example using DPB 
notation (in 2 columns). There are 3 blocks, for the 
CHECK($i), QTY($i,$q) and UPDATE events respectively.  

Compared to the earlier model [1], functions f_delChk_CQ 
and f_delChk_U replaced f_delChk, and functions 
f_newQ_CQ and f_newQ_U replaced f_newQ. These changes 
made 2 improvements. First, use of f_delChk_CQ and 
f_newQ_CQ in the CHECK and QTY blocks allowed for all 
items to be marked for deletion and for their selected quantities 
to be zero when the event was not UPDATE. That is, the target 
state remained nonemptyCart. Second, both f_delChk_U and 
f_newQ_U used $delChk and $newQ values for previous items 
to insure that the UPDATE event targeted the nonemptyCart 
state. 

III. STRENGTH 2 RESULTS 
Table VI presents a summary of the strength 2 results. The 

FV examples used manually selected fixed values; the EF 
examples used automatically evaluated embedded functions. 
The table lists the corresponding array parameters. The blocks 
column gives the number of FV blocks, either manually 
selected (for the FV examples), or automatically generated (for 
the EF examples). The combinations column shows the 
numbers of pairwise combinations. The total depends on the 
numbers of values for all factors; the residue is the number not 
covered due to constraints. The response time for each request 
is the difference between its start and stop log entries. 
Consequently fractions of seconds were truncated. 

The Calendar, Constraint 1 and Constraint 2 examples 
(Tables II and III) were run both with manually selected fixed 
values and with embedded functions. Each FV example used 
the number of FV blocks given in Table VI; each EF example 
used 1 functionally dependent block which led to the same 
number of FV blocks after evaluation. Corresponding FV and 
EF examples covered the same numbers of combinations and 
generated the same test cases. 

In the Constraint 3 EF example the values for factor P4 
were given by the function fP4, which depended on the values 
of 3 determinant factors $P1, $P2, $P3. From 1 FD block 21 
FV blocks were generated automatically; they led to 37 test 
cases. All pairwise combinations were covered while 
conforming to Constraint 3. 
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TABLE V.  PARTITION FOR SHOPPING CART EXAMPLE 

nonemptyCart to nonemptyCart with PHP Functions 
Shopping Cart Example - transition design  
$newItem 
$n 
$delChk[0] 
$item[0] 
$qty[0] 
$newQ[0] 
$delChk[1] 
$item[1] 
$qty[1] 
$newQ[1] 
$delChk[2] 
$item[2] 
$qty[2] 
$newQ[2] 
$i 
$q 
state 
event 
#NN nonemptyCart to nonemptyCart 
+ nonemptyCart to nonemptyCart; CHECK 
NULL 
1 2 3 
f_delChk_CQ(0,$n) 
f_item(0,$n,,) 
f_qty(0,$n) 
f_newQ_CQ(0,$n) 
f_delChk_CQ(1,$n) 
f_item(1,$n,$item[0],) 
f_qty(1,$n) 
f_newQ_CQ(1,$n) 
f_delChk_CQ(2,$n) 
f_item(2,$n,$item[0],$item[1]) 
f_qty(2,$n) 
f_newQ_CQ(2,$n) 
f_i($n) 
NULL 
nonemptyCart 
f_event_CHECK($i) 
 

+ nonemptyCart to nonemptyCart; QTY 
NULL 
1 2 3 
f_delChk_CQ(0,$n) 
f_item(0,$n,,) 
f_qty(0,$n) 
f_newQ_CQ(0,$n) 
f_delChk_CQ(1,$n) 
f_item(1,$n,$item[0],) 
f_qty(1,$n) 
f_newQ_CQ(1,$n) 
f_delChk_CQ(2,$n) 
f_item(2,$n,$item[0],$item[1]) 
f_qty(2,$n) 
f_newQ_CQ(2,$n) 
f_i($n) 
0 1 2 10 
nonemptyCart 
f_event_QTY($i,$q) 
 
+ nonemptyCart to nonemptyCart; UPDATE 
NULL 
1 2 3 
f_delChk_U(0,$n,1,0,1,0) 
f_item(0,$n,,) 
f_qty(0,$n) 
f_newQ_U(0,$n,1,0,1,0) 
f_delChk_U(1,$n,$delChk[0],$newQ[0],1,0) 
f_item(1,$n,$item[0],) 
f_qty(1,$n) 
f_newQ_U(1,$n,$delChk[0],$newQ[0],1,0) 
f_delChk_U(2,$n,$delChk[0],$newQ[0],$delChk[1],$newQ[1]) 
f_item(2,$n,$item[0],$item[1]) 
f_qty(2,$n) 
f_newQ_U(2,$n,$delChk[0],$newQ[0],$delChk[1],$newQ[1]) 
NULL 
NULL 
nonemptyCart 
UPDATE 
 

 
In the Constraint 4 EF example the values for factor P3 

were given by the function fP3, which depended on the values 
of 2 determinant factors $P1, $P2. In this example the values 
for $P1 were interpreted as the Boolean constants TRUE and 
FALSE. From 1 FD block 3 FV blocks were generated; they 
led to 12 test cases. 

The BMI EF example used 1 FD block with 5 test factors 
and 3 equivalence class factors. Each of the Medicare, Child 
and Adult equivalence class factors used 1 function to identify 
the classes of its expected results. Each function was evaluated 
for all combinations of its determinant factor values, so all 
allowed classes were included in the equivalence class factor’s 
values. Each of these classes was paired with all allowed test 
factor values. The 14 test cases reached 10 equivalence classes 
and covered with nondeterminant strength 2 [10]. 

The Shopping cart FV and EF examples were very similar, 
but differences in their test models prevented identical results. 
The FV example used manually selected blocks. To limit their 
number to 33, not all permutations of itemA, itemB and itemC 
occurred in the n positions: Position 0 had any of the 3 items; 
position 1 had itemB or itemC; position 2 had only itemC. The 

simplification was justified because all items were equivalent; 
what mattered in the example was that different items were in 
different positions. This simplification was unnecessary in the 
Shopping cart EF example; the embedded functions allowed 
for all permutations of items in $n = 1, 2 or 3 positions by 
generating more blocks.  

The Shopping cart EF example used 3 FD blocks, 1 for 
each of the CHECK, QTY and UPDATE events. The blocks 
required evaluation of 14, 14 and 12 instances of embedded 
functions respectively. 

The order of evaluation for each block turned out to be the 
order given in the request, shown in Table V. However the 
ordering was necessary because there were several composite 
relations among the functions, as shown in Table V. For 
example, in the case of function f_item, when there were 
$n = 3 items, value(s) returned depended on earlier instances: 

f_item: (0,$n,,) � $item[0] 
f_item: (1,$n,$item[0],) � $item[1] 
f_item: (2,$n,$item[0],$item[1]) � $item[2] 
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TABLE VI.  STRENGTH 2 RESULTS 

Example Array parameters 
(N;t,k,v1

k1…vs
ks) 

Blocks Combinations 
Total:Residue 

Response time 
HH:MM:SS 

Calendar FV (40;2,3,1216131) 5 126:38 00:00:01 
Calendar EF (40;2,3,1216131) 5 126:38 00:00:01 
Constraint 1 FV (5;2,2,3121) 2 6:1 00:00:01 
Constraint 1 EF (5;2,2,3121) 2 6:1 00:00:00 
Constraint 2 FV (16;2,2,52) 2 25:9 00:00:01 
Constraint 2 EF (16;2,2,52) 2 25:9 00:00:00 
Constraint 3 EF (37;2,4,54) 21 150:0 00:00:01 
Constraint 4 EF (12;2,3,513121) 3 31:8 00:00:00 
Body Mass Index EF (14;2,8, 513225) 10 189:36 00:00:01 
Shopping cart FV (91;2,18,1615344362212) 33 2291:431 00:00:02 
Shopping cart EF (98;2,18,1615346352112) 183 2499:383 00:00:09 

 
In the Shopping cart FV example the 33 manually selected 

blocks were distributed as 6 for the CHECK event, 24 for the 
QTY event and 3 for the UPDATE event. In the Shopping cart 
EF example 183 FV blocks were generated, 25, 100 and 58 
respectively for the CHECK, QTY and UPDATE events. 
Compared to the FV example, the EF example generated 8% 
more test cases while covering 14% more combinations. 

IV. VARIABLE STRENGTH METHODS 
Often combinatorial test designs use a fixed strength t to 

define the coverage among test factor values. All allowed t-
tuples among the k test factors are required to be covered. As t 
increases the coverage improves, and the cost of testing (e.g. 
number of test cases) increases. Variable strength [5] adds 
flexibility to cover a subset of k’ test factors with higher 
strength t’, while the rest of the factors retain strength-t 
coverage. Variable strength designs can enable additional test 
coverage in areas of particular importance or risk. Thus it 
offers cost-benefit choices beyond those of fixed strength 
alone. This section describes methods for variable strength 
designs using functionally dependent hybrid factors. 

A. Functionally Dependent Hybrid Factors 
A hybrid factor represents all the allowed combinations of 

values among 2 or more test factors. Williams and Probert used 
a hybrid factor to replace two interdependent test factors with 1 
factor independent of the others [12]. Here embedded functions 
are used to handle such constraints. But including hybrid 
factors in a test design enables associations among 
combinations of factors (represented by the hybrid factors) and 
other individual factors. 

Consider k test factors named $a, $b, $c, … and the 
function pair($a,$b), shown in Table VII, which returns the 2-
tuple ($a,$b) when called. Table VIII illustrates a design for 
k = 8 test factors. Factor $b has 3 values; all the other test 
factors have 2. Two functionally dependent factors, named 
($a,$b) and ($c,$d), are included in the design (for a total of 
K = 10 factors). Factors ($a,$b) and ($c,$d) have values given 
by the functions pair($a,$b) and pair($c,$d), and thus represent 
the respective pairs. When all pairs of ($a,$b) and ($c,$d) are 
covered, the subarray consisting of factors $a $b $c $d is 
covered with strength t’ = 4.  

TABLE VII.  PAIRING FUNCTION TO COMBINE TWO FACTORS 

PHP Function pair($a,$b) 
<?php 
function pair($a,$b) { 
  return('('.$a.','.$b.')');    # return the pair of arguments given 
} 
?> 

The subarray of $a $b $c $d is called the nominal subarray 
to distinguish it from other higher strength subarrays that may 
result from the hybrid factors. In this formulation the nominal 
subarray has k’ test factors and strength t’, with t � t’ � k’ � k. 
Examination of Table VIII shows that all 24 combinations of 
$a, $b, $c and $d are included in test cases. Moreover, all 12 
combinations of $a, $b and any other test factor are covered; all 
combinations of $c, $d and any other test factor are covered 
also.  

In this example there are no constraints among the original 
test factors. That characteristic is not changed by the inclusion 
of the pairing factors. But the resulting array does have 
constraints. For example, the value $a = 1 cannot be associated 
with the pair ($a,$b) = (0,0).  

Using pairing functions for variable strength is compatible 
with constraints among test factors. Specifically, when a 
pairing function factor is appended to an FD block, it insures 
that all pairs of $a and $b are represented by its ($a,$b) values 
in that block and in the subsequent FV blocks. And if the 
values of $a and $b include functions of other test factors, the 
support for composite functions enables the design to follow 
the corresponding constraints. When the pairing function 
appears in all the blocks of a partition, it results in a pairing 
factor, which conforms to the constraints implied by the set of 
all combinations of the FV blocks.  

TABLE VIII.  VARIABLE STRENGTH TEST CASES 

 $a $b $c $d $e $f $g $h ($a,$b) ($c,$d) 
1 1 1 1 1 0 0 0 0 (1,1) (1,1) 
2 0 2 0 0 1 1 1 0 (0,2) (0,0) 
3 1 0 1 0 1 1 0 1 (1,0) (1,0) 
4 0 1 0 1 1 0 1 1 (0,1) (0,1) 
5 0 0 1 1 0 1 1 1 (0,0) (1,1) 
6 1 2 0 1 0 0 0 0 (1,2) (0,1) 
7 0 0 0 0 0 0 0 0 (0,0) (0,0) 
8 1 1 0 0 0 1 1 1 (1,1) (0,0) 
9 1 2 1 0 1 0 1 1 (1,2) (1,0) 

10 0 1 1 0 0 0 0 0 (0,1) (1,0) 
11 1 0 0 1 0 0 0 0 (1,0) (0,1) 
12 0 2 1 1 0 0 0 0 (0,2) (1,1) 
13 1 1 0 1 1 1 1 0 (1,1) (0,1) 
14 1 2 1 1 1 1 1 0 (1,2) (1,1) 
15 1 0 1 1 1 1 1 0 (1,0) (1,1) 
16 0 2 1 0 1 1 0 1 (0,2) (1,0) 
17 0 1 1 1 1 1 1 0 (0,1) (1,1) 
18 0 0 1 0 1 1 1 0 (0,0) (1,0) 
19 1 1 1 0 0 0 0 0 (1,1) (1,0) 
20 1 2 0 0 0 0 0 0 (1,2) (0,0) 
21 1 0 0 0 0 0 0 0 (1,0) (0,0) 
22 0 2 0 1 0 0 0 0 (0,2) (0,1) 
23 0 1 0 0 0 0 0 0 (0,1) (0,0) 
24 0 0 0 1 0 0 0 0 (0,0) (0,1) 
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A similar tripling function, triple($a,$b,$c), can be used to 
append a tripling factor to the design, insuring that all allowed 
combinations of $a, $b and $c are associated with the values of 
all the other k-3 test factors. These hybrid factors, individually 
and in combination, can be used to construct variable strength 
designs that apply additional coverage as needed. 

B. Pairing Factors 
This section describes pairing factors for subarrays with 

t’ � 4 and k’ � 6. Examples are given in Table IX. 

1) Strength 3 subarrays 
Consider p test factors $a, $b, $c, … which are to be 

covered with strength t’ = 3. Assign them to 2 disjoint sets of 
factors. Because there are only 2 sets, any combination of 3 test 
factors must have at least 2 in one set or the other. For each 
pair of factors in a set, include a pairing factor in the test 
design. Each value of each pairing factor will be associated 
with each individual factor’s values, so all allowed 3-tuples 
will be covered. 

For example, with p = 5, assign $a and $b to the first set, 
and $c, $d and $e to the second. Include pairing factor ($a,$b) 
from the first set, and ($c,$d), ($c,$e) and ($d,$e) from the 
second. Each of the ($a,$b) pairs has a test case with each 
value of $c, $d and $e. Similarly, each pair from the second 
set, e.g. ($c,$d), is associated with $a and $b. This ($c,$d) pair 
is associated with $e as well. All the pairs are associated with 
the other individual factors, so these 4 pairing factors insure 
t’ = 3 coverage of the 5 test factors. 

Generally q factors can be chosen for the first set and the 
remaining p-q for the second. The total number of pairing 
factors C(q,2) + C(p-q,2) is minimized when q = p/2 if p is 
even, or when q = (p-1)/2 if p is odd; the total number of 
pairing factors is p(p-2)/4 or (p-1)2/4 respectively. In Table IX 
the subarrays following this construction are marked with an 
asterisk (*). In the (t’,k’) = (2,2) case, p = 3, and the strength-3 
subarray includes a test factor outside the nominal subarray, 
which includes factors $a and $b. In the other cases p = k’. 
When p = 4, the nominal subarray covers with t’ = 4. 

2) Strength 4 subarrays 
To cover k’ test factors with strength 4, pairs of pairing 

factors can be used. For k’ = 4, the 2 pairing factors ($a,$b) and 
($c,$d) associate all combinations of the 4 factors, as shown in 

Table VIII. Typically a subset of the C(k’,2) factor pairs is 
sufficient to cover all combinations of 4 factors. In the 
(t’,k’) = (4,5) case (Table IX), when the pairs of pairing factors 
include distinct individual factors (e.g. ($a,$b) with ($d,$e)), 4 
of the 5 factors are associated. There are 5 such pairs of pairing 
factors, and each covers a different combination of 4 test 
factors. Thus the 5 pairing factors insure the subarray covers 
with strength t’ = 4. In the k’ = 6 example, only 10 of the 15 
possible pairing factors are needed. 

C. Tripling Factors 
Examples of tripling and pairing factors for subarrays with 

t’ � 6 and k’ � 6 are given in Table IX. As mentioned above, a 
hybrid factor using a tripling function, e.g. triple($a,$b,$c), 
may be used to cover 4-tuples. A subarray of 5 test factors can 
be covered with strength 5 using 1 tripling factor and 1 pairing 
factor containing 5 distinct test factors: All allowed triples and 
pairs are combined. In the (t’,k’) = (5,6) case, 4 tripling factors 
containing the 6 test factors enable strength 5 coverage: Each 
of the 6 pairs of tripling factors combines 5 of the 6 test factors. 
And finally, 2 tripling factors containing 6 distinct test factors 
cover 6 test factors with strength 6. 

D. Associated Subarrays 
The coverage due to hybrid factors extends beyond the 

nominal subarray in variable strength designs. There are 
associated subarrays of higher strength which contain some or 
all of the nominal subarray factors. Their effect is to extend the 
higher strength associations beyond the nominal subarray. For 
example, in the (t’,k’) = (5,5) case, there are C(5,3) strength 3 
arrays in the nominal subarray. And each of the 
C(3,2) + C(2,2) pairs from the hybrid factors is paired with k-5 
other, individual test factors. So there is a total of 4k-10 
strength 3 subarrays due to the 2 hybrid factors. Similarly, the 
tripling factor leads to k-3 strength 4 subarrays. Numbers of 
associated subarrays of strength 3 and 4, n(3) and n(4), are given 
for the examples in Table IX.  

V. VARIABLE STRENGTH RESULTS 

A. Examples without Test Factor Constraints 
Table X presents results for the 10 variable strength 

examples of Table IX, with k = 8 test factors. The results 
without hybrid factors, VS (2,8), are shown also. Details of 
these results are available in [6].  

TABLE IX.  HYBRID FACTORS FOR HIGHER STRENGTH 

Factors of  
nominal subarray 

 (t’,k’) Hybrid pairing/tripling factors Associated subarrays 
n(3) n(4) 

$a $b * (2,2) ($a,$b) k-2  
$a $b $c  (3,3) ($a,$b,$c) 3k-8 k-3 
$a $b $c $d * (4,4) ($a,$b) ($c,$d) 2k-4 1 
$a $b $c $d $e * (3,5) ($a,$b) 

($c,$d) ($c,$e) ($d,$e) 
4k-10 3 

  (4,5) ($a,$b) ($a,$e) ($b,$c) ($c,$d) ($d,$e) 5k-15 5 
  (5,5) ($a,$b,$c) ($d,$e) 4k-10 k-3 
$a $b $c $d $e $f * (3,6) ($a,$b) ($a,$c) ($b,$c) 

($d,$e) ($d,$f) ($e,$f) 
6k-16 9 

  (4,6) ($a,$b) ($a,$c) ($a,$f) ($b,$c) ($b,$d) 
($c,$d) ($c,$e) ($d,$e) ($d, $f) ($e,$f) 

10k-40 15 

  (5,6) ($a,$b,$c) ($a,$d,$e) ($b,$d,$f) ($c,$e,$f) 12k-52 4k-9 
  (6,6) ($a,$b,$c) ($d,$e,$f) 6k-16 2k+3 
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As in the example of Table VIII, factor $b has 3 values; all 
the other test factors have 2. All combinations of test factors 
are allowed: Each request contains 1 block with fixed test 
factor values and the indicated number of hybrid factors with 
FD values. 

Table X gives the array parameters using the hybrid factors. 
The numbers of hybrid factors (k(2),k(3)) are the numbers of 
pairing and tripling factors corresponding to each example in 
Table IX; the numbers of associated subarrays of strength 3 
and 4 (n(3),n(4)) are given for k = 8. The blocks column gives the 
number of FV blocks after all functions have been evaluated. 
The combinations column shows the numbers of pairwise 
combinations, as in Table VI. The response time for each 
request is the difference between its start and stop log entries 
(fractions of seconds are truncated). 

Constraints among the hybrid factors are apparent: The VS 
(4,5) example has subarrays of test factors with t’ = 4, so 
N � 3123 = 24. Without constraints the 2 factors with 6 values 
would suggest a value for N of at least 36. But these are the 
pairing factors ($a,$b) and ($b,$c), for which there are only 12 
allowed combinations. 

B. Examples with Test Factor Constraints 
This section presents variable strength results for the 

shopping cart example. Embedded functions are used for 
conformance to test model constraints as well as for higher 
strength subarrays. 

The shopping cart example presented in Section II is reused 
here with hybrid factors to increase the strength of a subarray 
of 6 test factors: $delChk[0], $newQ[0], $delChk[1], 
$newQ[1], $delChk[2] and $newQ[2]. Results for strengths 
3 � t’ � 6 are compared. In addition to the earlier model (SCA), 
which uses parameters intended for a pairwise design, a second 
model (SCB) uses a parameter adjustment to improve its 
suitability for higher strengths. 

The SCB model reduces the number of item quantity values 
from 5 (0, 1, 2, 10 and NULL) to 4 (0, 1, 2 and NULL). This is 
accomplished by removing the value 10 from the functions 
f_qty, f_newQ_CQ and f_newQ_U, and by removing 10 from 
the values of $q in the QTY block. This has the effect of 
reducing the number of values for 1 test factor from 16 to 13, 3 
test factors from 5 to 4, 3 test factors from 4 to 3 and 1 test 
factor from 3 to 2. Consequently SCB response times are 
reduced considerably. 

Table XI shows the variable strength results for shopping 
cart models SCA and SCB. Strength 2 results without hybrid 
factors, SCA (2,18) and SCB (2,18) also are shown. The table 
gives array parameters including the hybrid factors, the 
numbers of hybrid factors (k(2),k(3)) and associated subarrays of 
strength 3 and 4 (n(3),n(4)). The blocks column gives the number 
of FV blocks after all functions have been evaluated. The 
combinations column shows the numbers of pairwise 
combinations, as in the tables above. The response time for 
each request is the difference between its start and stop log 
entries. 

Each of the SCA and SCB examples used 3 FD blocks, 1 
for each of the CHECK, QTY and UPDATE events. Function 

evaluation for SCA (2,18) yielded 25, 100 and 58 FV blocks 
respectively for the CHECK, QTY and UPDATE events. Each 
of the higher strength SCA examples had 9608, 38432 and 
2442 FV blocks respectively. Function evaluation for SCB 
(2,18) yielded 25, 75 and 58 FV blocks respectively for the 
CHECK, QTY and UPDATE events. Each higher strength 
SCB example had 4110, 12330 and 974 FV blocks 
respectively. 

Fig. 3 plots the response times on a logarithmic scale. The 
times for the higher strength SCA examples were from 12 to 60 
times longer than those for SCB. However the response time 
rankings by strength were the same for both models: t’ = 3, 6, 
4, 5, from shortest to longest. 

Fig. 4 plots the numbers of test cases generated. For t’ = 3, 
4 and 6, the SCA examples had about twice the number of test 
cases as the corresponding SCB example; for t’ = 5, the ratio 
was 2.7. Again, the rankings by strength were the same for 
both models: t’ = 3, 4, 6, 5, from fewest to most test cases. 

VI. DISCUSSION 
This section interprets the results and relates them to the 

objectives for this work. 

1. Specify constraints among test factors with simple 
functions in an established programming language. 

Constraints were described in a language familiar to 
software engineers to enhance usability and efficiency. 
Dependent factor values were defined as functions of other, 
determinant factor values. 

The 6 small, strength 2 examples of Table VI, used a total 
of 9 PHP functions. The longest function had 28 lines; the 
others had 12 or fewer lines.  

The Shopping cart EF request used 9 functions in 3 blocks 
(11 times fewer than the number of blocks in the FV request) 
to describe the test factor space more completely. The length of 
each function was less than 15 lines; 6 of the functions were 
under 10 lines. 

2. Evaluate composite, embedded functions automatically to 
generate test cases conforming to test model constraints. 

Automatic evaluation of the functions is important for 
efficient test design in fast-paced development projects. The 
complexity of real systems requires composite relations among 
the embedded functions. 

The Calendar, Constraint 1 and Constraint 2 EF examples 
generated test cases identical to their manually selected FV 
counterparts. Examination of the test cases for the Constraint 3 
and Constraint 4 EF examples indicated conformance to the 
required constraints. The BMI example showed that strength 2 
designs can reach equivalence classes having multiple 
determinant factors and can pair the classes with their 
nondeterminant factors. 

The Shopping cart EF request used 40 instances of 9 
functions in 3 FD blocks. The composite relations among these 
functions were evident in Table V. The resulting test cases 
have been made available for examination of their 
conformance to the constraints defined by the functions. 
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TABLE X.  VARIABLE STRENGTH RESULTS FOR 8 TEST FACTORS 

Example (t’,k’) Array parameters 
(N;t,K,v1

k1…vs
ks) 

Hybrid 
factors 
(k(2),k(3)) 

Associated 
subarrays 
(n(3),n(4)) 

Blocks Combinations 
Total:Residue 

Response time 
HH:MM:SS 

VS (2,8) (8;2,8,3127) (0,0) (0,0) 1 126:0 00:00:01 
VS (2,2) (16;2,9,613127) (1,0) (6,0) 6 228:18 00:00:01 
VS (3,3) (28;2,9,1213127) (0,1) (16,5) 12 330:48 00:00:00 
VS (4,4) (24;2,10,61413127) (2,0) (12,1) 24 320:26 00:00:00 
VS (3,5) (26;2,12,61433127) (4,0) (22,3) 48 552:66 00:00:01 
VS (4,5) (29;2,13,62433127) (5,0) (25,5) 48 762:124 00:00:02 
VS (5,5) (48;2,10,121413127) (1,1) (22,5) 48 446:56 00:00:01 
VS (3,6) (30;2,14,62443127) (6,0) (32,9) 96 926:140 00:00:02 
VS (4,6) (36;2,18,63473127) (10,0) (40,15) 96 1856:382 00:00:02 
VS (5,6) (64;2,12,122823127) (0,4) (44,23) 96 1398:464 00:00:03 
VS (6,6) (96;2,10,121813127) (0,2) (32,19) 96 562:72 00:00:02 

3. Generate variable strength designs using embedded 
functions. 

Section IV introduced hybrid factors to represent allowed 
combinations of values among 2 or more test factors. The 
hybrid factors used embedded pairing and tripling functions to 
increase the strength of selected test factors, the nominal 
subarray. Methods for obtaining desired strengths of nominal 
subarrays were specified for strength t’ � 6. Designs generated 
from these plans in Table IX were summarized in Table X, and 
their test cases have been made available for review. 

Hybrid factors also led to associated subarrays of higher 
strength: 1 pairing factor combined the pairs of 2 test factors 
with each of the other k-2 test factors, resulting in k-2 
associated subarrays of strength 3. Similarly 1 tripling factor 
combined the 3-tuples of 3 test factors with each of the other 
k-3 test factors, resulting in k-3 associated subarrays of 
strength 4. Table IX listed numbers of associated subarrays of 
strength 3 and 4 for each of the variable strength examples. 

A variable strength design permits a higher strength focus 
on test factors requiring more attention, i.e. the factors of the 
nominal subarray. However, the examples of Table IX offer 
choices with different emphases on the nominal subarray and 
on the associated subarrays. Thus, a (t’,k’) = (6,6) design has a 
higher variable strength t’ than a (5,6) design for coverage of 
the nominal subarray alone. But the (5,6) design has more 
strength 3 and 4 combinations of the nominal subarray factors 
with the other test factors. Use of embedded functions enables 
a variety of variable strength schemes and offers flexibility to 
define other relations for particular test projects. 

4. Generate test case designs with suitable response times. 
Different test models typically lead to different sets of test 

cases. Consequently multiple test case generation runs may be 
needed to compare alternate test designs. And during the 
course of a development project, test designs may need to 
change to reflect system modifications. Thus the usability of a 
test case generation tool depends on its response times. 

The strength 2 results (Table VI) and the small variable 
strength results (Table X) all had prompt response times; each 
was less than 10 seconds. The variable strength designs for the 
SCB test system had response times ranging from 18 to 47 
minutes. Overall the response times are acceptable. And there 
are a number of opportunities to improve response time 
performance beyond that of this initial implementation. 

One element contributing to the response time was the 
number of FV blocks generated. All blocks had to be processed 
to complete the design; more blocks required more processing 
time. For each shopping cart model the number of blocks 
needed for the intrinsic constraints of the test model was much 
smaller than the total for the higher strength designs. Table XI 
showed that for the SCB model the variable strength designs 
used about 110 times more blocks than the strength 2 design; 
the corresponding response time ratios exceeded 220. 

The increased number of blocks was due to a separate 
block for each combination of the nominal subarray factor 
values. This property was apparent in the numbers of blocks 
for the small examples (Table X).  

TABLE XI.  VARIABLE STRENGTH RESULTS FOR SHOPPING CART EXAMPLES  

Example (t’,k’) Array parameters 
(N;t,K,v1

k1…vs
ks) 

Hybrid 
factors 
(k(2),k(3)) 

Associated 
subarrays 
(n(3),n(4)) 

Blocks Combinations 
Total:Residue 

Response time 
HH:MM:SS 

SCA (2,18) (98;2,18,1615346352112) (0,0) (0,0) 183 2499:383 00:00:09 
SCA (3,6) (329;2,24,2111611311219181615346352112) (6,0) (92,9) 50482 9518:2428 03:42:02 
SCA (4,6) (347;2,28,211201161131121101928171615346352112) (10,0) (140,15) 50482 16839:5440 07:28:12 
SCA (5,6) (1241;2,22,8412612411911615346352112) (0,4) (164,63) 50482 21191:9587 47:23:23 
SCA (6,6) (656;2,20,3712411615346352112) (0,2) (92,39) 50482 7901:1883 06:16:06 
SCB (2,18) (55;2,18,13146372212) (0,0) (0,0) 158 1879:307 00:00:05 
SCB (3,6) (164;2,24,13210191716246372212) (6,0) (92,9) 17414 6208:1543 00:18:38 
SCB (4,6) (180;2,28,1321211019181736246372212) (10,0) (140,15) 17414 10543:3228 00:36:06 
SCB (5,6) (457;2,22,39120118115113146372212) (0,4) (164,63) 17414 10764:4322 00:47:20 
SCB (6,6) (319;2,20,22118113146372212) (0,2) (92,39) 17414 4835:1142 00:18:52 

73



 

 
Fig. 3. Response times for variable strength shopping cart examples 

 
Fig. 4. Numbers of test cases for variable strength shopping cart examples 

During evaluation of each hybrid function (a pairing or 
tripling function), each combination of its determinant factors 
had a separate block. Evaluation of each subsequent hybrid 
function led to a separate block for each of its combinations, so 
the number of resulting blocks was the product of all its 
combinations with those of the previously evaluated hybrid 
functions. Thus, after evaluation was complete, there was a 
separate block for each combination of the nominal subarray 
factors. However the constant number of blocks could not 
account for the response time differences among the variable 
strength designs: The blocks had different factor values. 

The variable strength response times did not simply rise 
monotonically with strength in these examples. It is interesting 
to note that the response time rankings followed the increasing 
numbers of associated subarrays (Table XI). The strength 2 
design had no associated subarrays and the shortest response 
time. The t’ = 3 and 6 designs had the next longer response 
times. These designs both had 92 associated subarrays of 
strength 3, and they had 9 and 39 associated subarrays of 
strength 4 respectively. The t’ = 4 and 5 designs had the 
longest response times, and they had 140 and 164 associated 
subarrays of strength 3 respectively. If this observation holds 
generally, Table IX would suggest choosing t’ = k’ or t’ = 3 for 
shorter variable strength response times.  

5. Generate test case designs with practical sizes. 
One of the most important elements of cost in a 

development project is the number of its test cases. Each case 
requires time to set up, execute, analyze, and oftentimes rerun. 
An efficient set of test cases of minimal size is essential. 

The strength 2 results (Table VI) showed that the Calendar, 
Constraint 1 and Constraint 2 EF examples generated the same 
numbers of test cases as their manually selected FV 
counterparts. No additional cost in test cases was evident. The 
Shopping cart EF example generated 98 test cases, while the 
Shopping cart FV example generated 91. The difference was 
attributed to a more thorough coverage of the test factor space 
by the embedded functions test model. 

Variable strength models led to additional test cases versus 
those for strength 2. In the small variable strength results 
(Table X), the test case ratio for VS (4,4) vs. VS (2,8) was 3. 

Ratios for (t’,k’) = (3,5), (4,5), and (5,5) were approximately 3, 
4 and 6 respectively. The VS ratios for k’ = 6 ranged from 4 
to 12. For the SCB model (Table XI), test case ratios for 
SCB (3,6), (4,6), (5,6) and (6,6) were approximately 3, 3, 8 
and 6 respectively compared with those for strength 2. 
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